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Abstract

This paper proposes a systematic model-based approach to the archi-
tectural description of faults and fault tolerance mechanisms in systems of
systems (SoSs). The challenges of engineering dependable SoSs motivate
a proposal for the view elements that would be needed to support a fault
tolerance profile for SoSs using the Systems Modelling Language (SysML).
The effectiveness of the approach is evaluated on a case study based on
a real emergency response SoS. Results suggest that this is a promising
approach, and that a comprehensive solution to the engineering of depend-
able SoSs requires that such a profile is linked to methods and tools for
requirements elicitation, safety analysis, architectural design and formal
verification.

Keywords: systems of systems, modelling, dependability, fault toler-
ance, error recovery, SysML, architectural design.

1 Introduction

Developing dependable computing systems is notoriously difficult, in part be-
cause of the complexity introduced by the need to detect and recover from errors.
As a result, fault tolerance is often the least well specified, verified, debugged,
tested and documented aspect of a system’s design. Consequently, the intro-
duction of error detection and system recovery can even reduce dependability.

Engineering dependable systems of systems (SoSs) is even more daunting.
SoSs are systems built, at least in part, from pre-existing constituent systems
that may not have been designed for integration. Their characteristics include
autonomy, dynamic connectivity, distribution, operational and managerial inde-
pendence of constituents, evolution over time, and emergent behaviour [10, 3].
Examples include transport (e.g. integrating multiple air traffic control and air-
line systems to deliver safe and reliable services), and smart power grids (e.g. in-
tegrating multiple generation, storage and delivery systems). The independence
of the constituent systems of an SoS means that novel fault tolerance techniques
are required compared to situations in which all the components can be readily
commanded.

As reliance is placed on SoSs, it becomes vital to have methods of verifying
their dependability properties. For this, it is paramount to have a precise model
of the SoS that supports the trade-off of alternative designs at early development
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stages and the determination of the contracts between constituent systems. In
this way, requirements on each constituents provider are clear, and existing
systems can be adapted or wrapped for participation in the SoS. Model-based
methods are increasingly used as a means to manage and control the overall
complexity of a system, reveal and document its key structure and behaviour,
and communicate these to stakeholders. Models for the realization of enterprise,
system, and software architectures can be visualised by inter-connected views
that allow different aspects of the underlying systems to be analysed.

In this paper we focus on model-based methods for the systematic architect-
ing of fault tolerance measures in dependable SoSs. The main contribution is
to propose an approach based on a set of views for modelling fault tolerance
using the Systems Modelling Language (SysML [18]). The need for such an
approach is motivated by the challenges of engineering dependable SoSs (Sec-
tion 2). Starting from a baseline of work on dependability and disciplined mod-
elling in SysML (Section 3), we propose architectural views to model faults
and fault tolerance mechanisms for SoS (Section 4). A case study based on a
real emergency response SoS (Section 5) provides an initial evaluation of the
views (Section 6) and leads to a discussion of how they could be developed to-
wards a full SysML profile for fault tolerant SoS. Conclusions and future work
are described in Section 7.

2 Background and Related Work

In Section 1, we argued that the engineering of dependable SoS necessitates
a precise, model-based approach. In this section, we introduce basic concepts
and terms used in our work, which relates systems of systems (Section 2.1) to
dependability, fault tolerance (Section 2.2) and architectural modelling (Sec-
tion 2.3) and argue that such an approach requires models of SoS architecture
as well as functionality.

2.1 Systems of Systems

The term systems of systems refers to systems composed of existing constituent
systems in such a way that the SoS provides new emergent functionality [10,
3]. Management of the complex interactions between constituent systems may
achieve savings across a whole collaborative activity or business, but in order to
take advantage of the opportunities afforded by SoS technology, it is necessary
to address the challenges that stem from the managerial and operational inde-
pendence of the constituents, their network and geographical distribution, the
reliance placed on emergent behaviour, their heterogeneity, and their capacity
to evolve during the SoS’s life.

SoS engineering is now a lively area of research. Our own work is part
of an EU initiative supporting a suite of research, community building and
roadmapping projects1. There are numerous reports on the application of SoS
engineering in areas including defence, transport, power grid, health care, space

1Our work focuses on dependability and formal model-based design methods for SoS in
the COMPASS project (www.compass-research.eu). Related projects include DANSE (www.
danse-ip.eu), T-AREA-SOS which promotes transatlantic cooperation (www.tareasos.eu/
and ROAD2SOS (www.road2sos-project.eu).
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and robotics. However, methods for engineering dependability into SoS from
the architectural design stage onwards remain in their infancy.

2.2 Dependability and Fault Tolerance

The dependability of a system is defined as its ability to deliver a service that
can be justifiably trusted [1]. The means for attaining dependability can be
broadly classified into fault prevention, tolerance, removal and forecasting. En-
suring dependability usually requires various techniques in different phases of
the life cycle. Systematic approaches to structuring requirements, architectural
design and system verification can all assist fault prevention and removal. How-
ever, there are numerous sources and types of faults, many of which cannot
be completely eliminated in development. For example, it may be infeasible to
produce defect-free software, hardware may degrade, and users or the system
environment may behave in unanticipated ways.

We use the dependability taxonomy established in [1] which defines a sys-
tem failure as a deviation of the service provided by the system from expected
(correct) behaviour. An error is defined as the part of the system state that can
lead to its subsequent service failure. The adjudged or hypothesized cause of an
error is called a fault. An erroneous state is created when a fault is triggered,
this can lead to changes in the system service (its external behaviour) – this is
classified as a system failure (inability to deliver the service). Fault tolerance
measures (the focus of this paper) prevent failures from arising in the presence
of faults; this is achieved by detecting errors and conducting system recovery
to remove the erroneous state and, if possible, faults.

2.3 Fault Tolerance Architectures in SoSs

The characteristics of SoSs make the need for fault tolerance clear. There is
a risk of unanticipated failures in independently managed constituent systems.
The distributed nature of the SoS can introduce communications faults. There
is dynamic evolution (change) in constituents, and the potential for mismatches
between constituents. There is also a high risk of concurrent error caused by
error propagation or by reliance of several constituent systems on the same
components/infrastructures. Any of these can lead to failure of the SoS as a
whole. This begs a crucial question: where is the boundary of an SoS? More
specifically, it is not always clear to which extent we could recover or involve
in recovery constituent systems when we are recovering in an SoS. Together,
these sources of risk suggest that the introduction of fault tolerance into SoS
designs requires a model that identifies SoS boundaries, constituents and their
connectors. These aspects form the architecture of the SoS.

The majority of work on architecture description languages (ADLs) is at the
level of software architecture [11]. Many existing notations (such as UML [12]
and formal ADLs such as Darwin [9]), therefore, do not contain architectural
abstractions suitable for modelling SoSs. The advancement of model-based ap-
proaches to embedded systems has strengthened the need for notations mod-
elling both hardware and software elements. Recent notations including SysML
[13] and AADL [7] address architectures at the system engineering level and
may be considered for SoS descriptions [15].
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There is a substantial body of work on architecting fault tolerant systems
(see, for example, a recent series of WADS workshops2), including work on
developing an Error Model Annex to AADL that allows architectural modelling
of dependability features [17], focusing on the error transitions of components
and how they are propagated. A number of fault tolerance patterns (such
as error detection mechanisms in a hot standby redundant system) have also
been defined in AADL [17]. In addition, UML has been used for modelling
erroneous behaviour in embedded systems [2, 4]. Unfortunately, there are no
substantial advances in developing architectural approaches to the description
of faults and fault tolerance in SoSs, and most current modelling notations
lack precise foundations to support the required trade-off studies through which
particular SoS models can be assessed [20].

3 Baseline

Our work aims to provide precise model-based methods and tools for the de-
scription and analysis of architecture and functionality, faults, errors and fail-
ures, as well as fault tolerance mechanisms. Within the overall design flow,
we aim to allow the early construction of abstract models including faults and
fault tolerance, once dependability requirements begin to be captured. Such
models should help developers to make informed decisions, comparing alterna-
tive designs, and verifying that the SoS has enough fault tolerance to meet the
dependability requirements and adjust the architecture where necessary.

Our approach combines the disciplined use of SysML for architectural de-
scription with a formal language (the COMPASS Modelling Language – CML)
for the detailed specification of functional and other characteristics of con-
stituent systems. The independence of constituent systems means that these
interfaces are described in contractual terms, recording the assumptions made
by constituent systems and the guarantees that they offer when those assump-
tions are met. An automated translation from the architectural model in SysML
into CML, coupled with the formal semantics of CML, together provide a ba-
sis for the composition and refinement of interface descriptions and enables
automated analysis of SoS properties by proof, model checking and/or simula-
tion. The work reported here focuses on modelling faults and fault tolerance
mechanisms in this setting. It is intended to form part of an integrated ap-
proach combining dependability requirements capturing and traceability, fault
tolerance modelling, safety analysis, architectural design of fault tolerance and
formal verification of the fault tolerance and dependability properties. The ele-
ments of CML are described in greater detail elsewhere [21]. In the remainder
of this paper, we focus on the architectural aspects, and hence on SysML.

Not all types of error recovery are likely to be suitable for SoSs. The most
popular mechanisms based on backward error recovery (such as rollback, abort,
retry, checkpointing) or replication are not readily applicable because of the
problems of distribution and the independence of constituents. It is clear that
forward error recovery (in the form of exception handling or compensation) is the
most appropriate recovery to be conducted at the level of SoSs. The emergent
behaviour of the SoS relies on the coordination of its constituents, so SoS failures
are likely to require cooperative recovery involving several constituent systems

2http://www.cs.kent.ac.uk/events/conf/2009/wads/
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because of the difficulty of containing errors when constituent systems heavily
depend on each other.

SysML [18] is a profile for UML 2.0, designed for systems engineering, with
several features giving it the potential for SoS architecture description. SysML
uses a subset of UML 2.0 and provides further extensions to the UML super-
structure. It has wide industrial support and a sound tool base. It provides
several diagram types, with ‘precise natural language’ semantics, to support the
description of SoS architectural structure, behaviour and requirements. Some
extensions have been made to SysML for fault modelling or safety analysis.
However, these tend to focus on specific goals such as the identification and
refinement of (non-functional) requirements [16, 19] in safety critical systems,
or the extraction of component dependencies for fault tree analysis [22]. The
closest approach to ours extends SysML with stereotypes for the purposes of
automated extraction of Failure Modes and Effects Analysis [6]. However, we
believe that the approach we propose is the first view-based approach to fault
modelling in SysML. Such an approach provides not just a notation but also a
methodology for describing and understanding the impact of faults and recov-
ery procedures in SoSs. Our focus is on demonstrating how to separate normal
and abnormal behaviour of a SoS at the architectural level and how to use the
SysML features to capture error detection and recovery concerns.

4 Architectural Modelling of Fault Tolerance us-
ing SysML

SysML is a rich language with many different ways to model the same behaviour.
The SysML diagrams provide views onto the underlying model describing the
architectural structure, behaviour and requirements of the model. Rather than
prescribing a subset of diagrams that are suitable for fault modelling, we opt
to describe a set of views that together will build up a picture of the erroneous
behaviour and recovery procedures present in an SoS. These views fall into two
categories:

Nominal The structure and behaviour of the system under the assumption
that no faults are present.

Erroneous Behaviour & Recovery Describes possible faults, errors and fail-
ures, and the behaviour of the SoS in the presence of such dependability
threats. Also includes the structure and behaviour of the system with
recovery procedures included to deal with the identified faults and errors.

We propose the initial modelling of the nominal structure and behaviour of
the SoS using the views outlined in Table 1. For each view, we provide a brief
description. In Section 7, we propose future work to enhance their definition.

Several views are proposed for modelling erroneous behaviour and recovery
procedures. Some of these show the structural relationships between faults,
errors, failures and components, whilst others show how faults and errors impact
on the behaviour of the SoS. For the sake of clarity, most of these views (with the
exceptions of Fault/Error/Failure Definition and the Recovery Processes views)
are intended to focus on one fault at a time, although for interacting faults it
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Structural Views

Name Description

Ontology Defines the concepts of the SoS, with their relationships
provided. Includes structural and behavioural concepts, defined
using block definition diagrams (BDDs).

Composition Composition, association and generalisations of constituents.
Defined using BDDs, may contain operations and attributes.

Connections Connections between constituent systems, and between the
SoS and its environment. Connections defined using internal
block diagrams (IBDs) and may identify interfaces between
constituents.

Behavioural Views

Name Description

Scenarios Describes sequences of interactions between constituent systems
and the SoS and its environment defined using sequence
diagrams (SDs). Do not define the complete SoS behaviour.

Processes Processes are sequences of actions to be taken in different stages
of the SoS lifecycle [8]. A combination of BDDs and activity
diagrams (ADs) are used in process modelling.

Table 1: SysML views of nominal structure and behaviour

may be useful to model several faults in a single view. The proposed structural
and behavioural views are outlined in Table 2.

5 Case Study: an Emergency Response SoS

A case study based on a unified emergency response call centre is used to illus-
trate the fault modelling approach and evaluate the applicability of the views
described in Section 4. The aim is to assess (Section 6) what additional under-
standing of the SoS may be gained by using these views and how well they can
capture the behaviour of the SoS in the presence of faults.

The case study is supplied by the Italian company Insiel to operate in the
Fruili Venezia Giulia region of North Italy. The system of interest provides an
emergency response to targets identified by the public: we refer to this system as
the Insiel SoS. The Insiel SoS may be classified as an acknowledged SoS the terms
of Maier [10] and Dahmann et al. [5]. The constituent systems are operationally
and managerially independent – provided and developed by external organi-
sations. Each constituent may be geographically distributed and may evolve.
The SoS is considered acknowledged as the SoS has recognised objectives and a
recognised manager in the form of the call centre, whilst the constituents retain
their independence. Evolutionary changes are based on collaboration between
the SoS and its constituents.

5.1 Informal Description of Case Study

Figure 1 provides a high-level, informal structural representation of the ER sys-
tem. The figure identifies the SoS boundary and the constituent systems: Phone
System, Call Centre, Radio System and Emergency Response Unit (ERU). The
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Structural Views

Name Description

Fault/Error/Failure Define faults, errors and failures of the SoS using BDDs.
Definition Faults, errors or failures may be generalised into abstract

categories.

Fault Propagation Identifies propagation of faults through errors to failures
and their relationships to constituent systems using IBDs.

Fault Tolerance Extends nominal Composition View with additional
Structure components required to tolerate a given fault.

Fault Tolerance Extends nominal Connection View with additional
Connections components identified in the FTS view and the

interfaces and connectors to tolerate a given fault.

Behavioural Views

Name Description

Erroneous/Recovery Models behaviour in the presence of errors (with and
Scenarios without recovery) as scenarios in SDs. Shows erroneous

behaviour propagation and recovery procedure triggers.

Erroneous/Recovery Extends nominal Process BDDs to include behaviour
Processes resulting from faults. Further processes are added

to model the recovery procedures.

Fault Activation Extends nominal Process ADs to model the low level
behaviour of errors. Identifies when faults may be activated,
what happens after activation and where in the process the
error may be detected.

Recovery Further extends nominal Process ADs to show the
behaviour of the recovery procedures once an error has been
detected.

Table 2: SysML views of erroneous/recovery structure and behaviour

entities in the environment with which the SoS interacts include Callers and
Targets. The purpose of this simplified Insiel SoS is to meet one high-level re-
quirement: for every call received, send an ERU with correct equipment to the
correct target.

Figure 1: Outline structure of Emergency Response SoS, its constituent systems
and environment
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Fault Description Error Recovery
Detected by

Fault 1 Complete ERU and/or The ERU driver uses his/her mobile
failure of Call Centre phone. If there is no mobile phone
the Radio coverage, the personnel uses landline
System phones (e.g. the phone of the patient)

Fault 2 An ERU ERU (Driver) ERU with patient: a new ERU
breaks or Call Centre without medical personnel is sent,
down or to retrieve the patient and the ERU
crashes crew. ERU driver waits for the tow truck

ERU without patient: a new ERU or a
car is sent to retrieve ERU crew
(except driver, as he waits for assistance)

Fault 3 An Operator Call Centre Re-direction of the ERU to the correct
sends an (Operator), target location (assuming that this can
ERU to Caller or ERU be resolved from the information available),
the wrong or select closer ERU
location

Table 3: Emergency Response SoS faults of interest

The Phone System is a complex system, operated and managed by several
external telecommunications companies. It provides different types of emer-
gency phone numbers corresponding to different types of emergency (e.g. fire,
public disorder, mountain rescue) which may require a specialised response.
Each incoming call from caller is given unique identifier and routed to the Call
Centre. The Call Centre constitutes human operators and the call centre soft-
ware system. Given an incoming call, the Call Centre generates and manages
rescue events. The Radio System handles communications between the Call
Centre and ERUs, maintaining a database of ERU identifiers to ensure cor-
rect message routing. Finally, the ERUs, with externally managed and owned
communication systems, provide aid to a specified target. ERUs may contain
specific equipment for particular type of aid.

5.1.1 Faults of Interest

For our study, we identify three faults which may occur in the simplified Insiel
SoS. These relate to failures of the constituent systems leading to error states
in the SoS, which are discovered by different constituents. For each fault, we
propose recovery guidelines which may involve several constituent systems and
reconfiguration of the SoS architecture where required. The faults are outlined
in Table 3. We also explored the recovery procedures required in the presence
of multiple simultaneous (concurrent) errors and found that there was no need
for joint recovery (where multiple errors need to be resolved at the same time).
However, it was observed that the Radio System is an essential supporting
system for the SoS. This means that recovery from a Radio System failure
needs to be completed before recovery from (concurrent) errors caused by the
activation of Fault 2 or Fault 3 can be handled.
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Figure 2: Fault Propagation View for Fault 1

5.2 Modelling the Case Study in SysML

The SysML views described in Section 4 were applied to the emergency response
case study. The purpose of this is two-fold, first to illustrate their usage and
second to evaluate their applicability to a real life SoS. Some views are omitted
here, the complete set of SysML views can be found in Appendix A. Here we
present the Fault Propagation View, the Fault Tolerance Connections View and
the Fault Activation View. The fault shown in all of these views is Fault 1, the
complete failure of the Radio System as described above.

Figure 19 shows the Fault Propagation View for Fault 1. The fault “Com-
plete Failure of the Radio System” leads to the error state “Radio System Un-
available”, which in turn leads to the SoS failure “Target Not Attended by ERU”
(as the call centre cannot communicate with the ERU to tell it where to go).
This causal chain is shown in the view as well as links from the faults, errors
and failures to the constituent systems. For example, it can be seen that the
error state may be detected either by the Call Centre or by an ERU.

In Figure 21 we start to consider how to tolerate the Radio System failure
in the Fault Tolerance Connections View for Fault 1. This view shows the
SoS architecture that is required to tolerate the identified fault. Constituent
systems, interfaces and/or connections (that allow the SoS to handle the fault)
are added to the connections view of the nominal behaviour. For the emergency
response system an extra constituent system (the Mobile Phone System) has
been incorporated into the SoS. This provides the same functionality as the
Radio System, effectively acting as a hot spare. Note also that a new connection
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Figure 3: Fault Tolerance Connections View for Fault 1

has been added between the ERU and the Phone System. This allows the
situation where an ERU communicates to the call centre using a landline phone.
The interfaces between the components are very simple with just one operation
of the same name. For example the SendMsgIF has the operation

sendMsg(in senderId : ID, in destnId : ID, in msg : String) .

Interface operations are usually shown in a separate SysML BDD for clarity.
Figure 24 illustrates the Fault Activation View of the SoS. The behaviour

of the SoS is extended to show when a given fault may be activated (using
interruptible regions) and how this impacts on the actions performed. The
opportunities for detecting errors resulting from the fault activation are also
shown using interruptible regions. Figure 24 shows the “initiate rescue” process
of the emergency response SoS, which involves processing the data from the
caller, allocating an ERU and requesting the ERU to service the rescue event.
The first interruptible region encountered in the AD shows where Fault 1 can be
activated. This results in the message from the Call Centre being dropped (an
omission fault), which may then be detected in the second interruptible region.
If the error is detected a recovery procedure is started, otherwise the process
terminates without an ERU being sent to the target (resulting in a failure of
the SoS).

6 Discussion

6.1 Case Study Evaluation

The case study provided a useful SoS with which to validate the SysML mod-
elling approach proposed in Section 4. In producing the SysML views of the
emergency response SoS, several questions arose that may otherwise not have
been considered until later in the development process. For example, consider
the situation where ERU personnel use a landline phone to contact the call cen-
tre (because the radio and mobile systems are unavailable). Producing the fault
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Figure 4: Fault Activation View (initiate rescue process) for Fault 1

tolerance connections view for this scenario raised the question as to whether
the ERU personnel use the same interface as the general public, or whether they
have a direct line to call centre staff (note that the former of these was modelled
in Figure 21). The case study clearly demonstrated that in a complex SoS it is
possible to recover from a failure of a constituent system using reconfiguration
and involving alternative solutions provided by another constituent system.

Some of the SysML elements shown in Section 5 include text inside guillemets.
These highlight features (e.g. 〈〈FA〉〉 for fault activation events) of the models
that may be more generally applicable for fault modelling in SysML. These spe-
cial elements can be described in a SysML “profile”, discussed in more detail
below.

There were several challenges in modelling the case study in SysML. For
example, it is unclear how best to record that an event or action should have
occurred, but did not due to some fault. In ADs the interruptible regions
provide a useful mechanism for indicating that something has gone wrong, but
at a higher level of abstraction (SDs) it is less clear how to represent this. A
possible solution to this is to “stereotype” events and actions as failure events or
omission faults as discussed below. A further issue is how to make this approach
scalable to the real complexity of SoSs (whilst the case study is a real SoS, it
was modelled at a very high level of abstraction). Using sub-activities in ADs is
one possible solution to this, but it is not immediately obvious how to represent
the propagation of faults at a lower level of abstraction to the parent AD.

Finally, an important goal of the COMPASS project is to enable safety
analysis such as fault tree analysis or HiP-HOPS [14]. Whilst we feel that the
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views described above aid in the understanding of the erroneous behaviour of
a SoS, it is not yet clear how the models can be exploited to provide input to
some suitable safety analysis method.

6.2 Towards a SysML Profile

The SysML views for fault modelling outlined in Section 4 were described in-
formally. In future work it is our intention to define these more formally using
a SysML profile, a mechanism for extending SysML for different purposes pri-
marily through the use of stereotypes [18]. Stereotypes allow the specialisation
of diagrams (e.g. to define views) and diagram elements (e.g. to define special
elements such as those highlighted by guillemets in the emergency response case
study) by allowing additional properties of these elements to be defined.

A number of diagram elements have been identified as suitable candidates
for stereotypes in a fault modelling profile (based on the views described in Sec-
tion 4). Faults, errors and failures (in the structural views) could be represented
by stereotyped blocks with properties such as “located in” (fault), “detected by”
(error) and “observed at” (failure). The fault/error/failure propagation chain
could be included in these stereotypes using “caused by” and/or “causes” prop-
erties. Processes and recovery processes could be stereotyped for the Recovery
Processes View. This would simply highlight which processes are normal be-
haviour and which provide fault tolerance. Actions within the processes (and
ADs) may be tagged as erroneous (should not occur in normal operation) or
omission (highlighting where something should have occurred but did not due
to a fault). Events in SDs and ADs could be stereotyped as well for fault acti-
vation, error detection and failure occurrences. To complete the fault modelling
profile in SysML, each view would be defined as a stereotype of its base diagram
(e.g. BDD for the Fault/Error/Failure Definition View) and the diagram ele-
ments that could appear in the view (including the new stereotyped elements)
would be specified.

7 Conclusions

The approach presented in this paper supports disciplined SysML modelling of
fault tolerant systems of systems. It is based on a clear separation of SoS nor-
mal and erroneous/recovery behaviour, and supports explicit reasoning about
SoS faults and errors, error propagation, fault and error handling. This work
contributes to our overall aim of developing a general approach to systematic
development, modelling and verification of dependable SoSs. To fully achieve
this aim, we need to rigorously define a fault tolerance SysML profile for mod-
elling of SoSs. This will enable a semi-automatic translation from fault tolerance
SysML models to CML models to allow formal verification of the dependability
(in particular, fault tolerance) properties. A method for requirements elicitation
(supported by SysML) that precedes the architectural design (as presented in
this paper) is also required. Finally, a link between the SysML architectural
design and established safety analysis methods needs to be developed for safety
critical SoSs. These directions form the next steps of our research in this area.

Is our approach specific to systems of systems, or is it just as applicable to
systems generally? SoSs form a subclass of systems with particularly challenging
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properties, so it is not surprising if the set of views that we propose could be
deployed more widely. We would, however, expect that the more limited range
of recovery mechanisms applicable in the SoS case would affect the way in which
the set of views might be used in the SoS setting.
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A Case Study Models

This appendix provides the SysML views created for the emergency response
case study described in Section 5.

A.1 Nominal behaviour

Figure 5: Ontology View

Figure 6: Composition View
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Figure 7: Connections View

Figure 8: Connections View (interfaces)

Figure 9: Processes View (BDD)
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Figure 10: Scenarios View (SoS level)

Figure 11: Scenarios View (internal level)
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Figure 12: Processes View (process call process)
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Figure 13: Processes View (initiate rescue process)
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Figure 14: Processes View (service rescue process)
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Figure 15: Processes View (drive process)
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Figure 16: Processes View (time rescue process)
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Figure 17: Processes View (monitor rescue process)
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A.2 Erroneous behaviour

Figure 18: Fault/Error/Failure Definition View
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Figure 19: Fault Propagation View for Fault 1

Figure 20: Fault Tolerance Structure View for Fault 1
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Figure 21: Fault Tolerance Connections View for Fault 1

Figure 22: Erroneous/Recovery Processes View
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Figure 23: Recovery Scenario View for Fault 1

Figure 24: Fault Activation View (initiate rescue process) for Fault 1
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Figure 25: Recovery View for Fault 1
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