
Deep Feature-based Face Detection on Mobile Devices

Sayantan Sarkar1, Vishal M. Patel2 and Rama Chellappa1
1 Center for Automation Research, University of Maryland, College Park, MD 20742

{ssarkar2, rama}@umiacs.umd.edu
2 Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854

vishal.m.patel@rutgers.edu

Abstract

We propose a deep feature-based face detector for mo-
bile devices to detect user’s face acquired by the front-
facing camera. The proposed method is able to detect faces
in images containing extreme pose and illumination varia-
tions as well as partial faces. The main challenge in devel-
oping deep feature-based algorithms for mobile devices is
the constrained nature of the mobile platform and the non-
availability of CUDA enabled GPUs on such devices. Our
implementation takes into account the special nature of the
images captured by the front-facing camera of mobile de-
vices and exploits the GPUs present in mobile devices with-
out CUDA-based frameworks, to meet these challenges.

1. Introduction
Current methods of authenticating users on mobile de-

vices are mostly PIN or pattern based, which provides au-
thentication only during the initial login. Password-based
methods are susceptible, because people sometimes set
passwords that are easy to guess or are repetitive [1] and
pattern-based systems are vulnerable to smudge attacks [2].
Once the attacker successfully bypasses the initial authenti-
cation barrier, the phone has no way of blocking or denying
the attacker. Continuous authentication systems deal with
this issue by continuously monitoring the user identity after
the initial access to the mobile device based on how the user
interacts with the mobile device. Examples of such systems
include touch gesture-based systems [3], [4], [5], face-based
systems [6], [7], [8], gait-based systems [9], stylometry-
based methods [10], speech and face-based method [11]
[12] and sensor-based methods [13], [14]. It has been shown
that face-based recognition can be very effective for contin-
uous authentication [11], [7], [15], [8].

Face detection is a very important step in face-based au-
thentication systems. There has been substantial progress
in detecting faces in images, which have impressive perfor-
mances on challenging real-world databases [16]. But such

databases are predominantly composed of general surveil-
lance or media type images and not specifically of images
captured using front-facing cameras of smartphones. As
we shall discuss later, face images captured using the front-
facing cameras of mobile devices possess some unique fea-
tures that can be used as powerful prior information to
simplify the task of face detection on mobile platforms.
This paper proposes a deep convolutional neural network
(DCNN)-based face detection scheme for mobile platforms.

1.1. Motivation

State of the art face detection techniques are based
on DCNNs [17], [18]. Variations of DCNNs have been
shown to perform well in various datasets like Face Detec-
tion Dataset and Benchmark (FDDB) [19] and Annotated
Face in-the-Wild (AFW) [20]. Though DCNN-based meth-
ods can run on serial processors like CPUs, they are pro-
hibitively slow without parallel processors like GPUs. Mo-
bile devices and consumer electronics products like cam-
eras often have in-built face detection systems, but since
they do not have much computational horsepower, simpler
detection algorithms are implemented on them, which do
not have as high a performance as DCNN-based methods
but can run on low power mobile platforms. Thus, there
is a tradeoff between high performance and hardware and
power constraints. This paper seeks to reconcile the two
competing objectives and studies the feasibility and effec-
tiveness of DCNN-based face detection methods in mobile
platforms. Clearly, the most powerful DCNN-based face
detectors that are designed to run on desktop environments
will not be a good candidate for a DCNN-based detector for
mobile platforms. Below are a few differences between the
two tasks.

1. Differences in hardware and software setup:

• The de facto hardware requirement for DCNNs
is a powerful Nvidia GPU. Clearly, mobile GPUs
are much less powerful, hence the algorithms
need to be simpler.

ar
X

iv
:1

60
2.

04
86

8v
1

 [
cs

.C
V

]
 1

6
Fe

b
20

16

• Most DCNN frameworks use a CUDA backend,
but since most mobile GPUs are not made by
Nvidia, they do not support CUDA. Hence, a
more portable software stack is needed.

2. Differences in dataset:

• Generic face databases may have images with
multiple small faces while the front-facing cam-
era captures face images when the user is using
the phone and hence may have one large face im-
age. Therefore, we can restrict ourselves to de-
tecting a single face only. Also, given the typical
distance at which the user interacts with his or her
phone, we can make assumptions about the max-
imum and minimum sizes of the captured faces.

• The images captured by the front-facing camera
usually have the user’s face in a frontal pose. Ex-
treme pose variations are rare and one can focus
on detecting faces with minor pose variations.

• Faces captured by the front-facing camera, how-
ever, tend to be partial. A mobile face detector
should be equipped to detect partial faces, which
is not the focus of many generic face detectors.

This paper makes the following contributions:

• Exploiting the unique nature of the face detection
problem on mobile platforms, we design an effective,
simplified DCNN-based algorithm for mobile plat-
forms that need not be as powerful as general face de-
tectors, but is fine-tuned to work in a mobile setting.

• Most of the existing implementations of DCNNs use a
CUDA backend, but most mobile GPUs are not Nvidia
GPUs, hence they do not support CUDA. We develop
libraries (in OpenCL and RenderScript) to implement
DCNN-based algorithms on GPUs without resorting to
CUDA, so that the algorithm is portable across multi-
ple platforms.

Rest of the paper is organized as follows. We first sur-
vey related works that have influenced the current algorithm
and discuss their advantages and disadvantages. Section 2
introduces the algorithm in full details and ends with a dis-
cussion on the salient features of the algorithm. Section 3
explores the details of the actual implementation of the al-
gorithm on a mobile platform. Section 4 presents evaluation
results of the algorithm on two datasets, UMD-AA and MO-
BIO. Finally we draw some conclusions about the algorithm
and suggest some future directions.

1.2. Related Work

Cascade classifiers form an important and influential
family of face detectors. Viola-Jones detector [21] is a

classic method, which provides realtime face detection, but
works best for full, frontal, and well lit faces. Extending the
work of cascade classifiers, some authors [22] have trained
multiple models to address pose variations. An extensive
survey of such methods can be found in [16].

Modeling of the face by parts is another popular ap-
proach. Zhu et al. [20] proposed a deformable parts model
that detected faces by identifying face parts and modeling
the whole face as a collection of face parts joined together
using 'springs'. The springs like constraints were useful in
modeling deformations, hence this method is somewhat ro-
bust to pose and expression changes.

As mentioned before, current state-of-the-art meth-
ods involve deep networks, which have been extensively
adopted and studied both by the academic community and
industry. Current face detectors at commercial companies
like Google and Facebook use massive datasets to train
very deep and complex networks that work well on uncon-
strained datasets, but they require huge training datasets and
powerful hardware to run.

Recent studies have shown that in the absence of massive
datasets or hardware infrastructure, transfer learning can be
effective as it allows one to introduce deep networks with-
out having to train it from scratch. This is possible as lower
layers of deep networks can be viewed as feature extrac-
tors, while higher layers can be tuned to the task at hand.
Therefore, one can use the lower layers of common deep
networks like AlexNet [23] to extract general features, that
can then be used to train other classifiers. Works of Bengio
et al. [24] have studied how transfer learning works for deep
networks.

Specific to the mobile platform, Hadid et al. [6] have
demonstrated a local binary pattern (LBP)-based method
on a Nokia N90 phone. Though it is fast, it is not a ro-
bust method and was designed for an older phone. Current
phones have more powerful CPUs and more importantly,
even GPUs, which can implement DCNNs.

Finally, let us consider the datasets used for mobile face
detection. While there are many face databases available,
they are not suitable for evaluating mobile face detection
algorithms. MOBIO is a publicly available mobile dataset
[11] which consists of bi-modal (audio and video) data
taken from 152 people, but it is a very constrained one as
users are asked to keep their faces within a certain region,
so that full faces are captured. A more suitable dataset for
our purpose is the semi-constrained UMD-AA dataset [7],
which shall be described in a later section.

2. Deep Features-based Face Detection on Mo-
bile Devices

As mentioned briefly before, transfer learning is an ef-
fective way to incorporate the performance of deep net-
works. The first step of the Deep Features based Face De-

Figure 1. Overview of the proposed deep feature-based face detection algorithm for mobile devices.

tection on Mobiles (DFFDM) algorithm is to extract deep
features using the first 5 layers of Alexnet. Different sized
sliding windows are considered, to account for faces of dif-
ferent sizes and an SVM is trained for each window size to
detect faces of that particular size. Then, detections from
all the SVMs are pooled together and some candidates are
suppressed based on an overlap criteria. Finally, a single
bounding box is output by the detector. In the following
subsections, the details of the algorithm and model training
are provided. Figure 1 provides an overview of the entire
system.

2.1. Dataset

The UMD-AA dataset is a database of 720p videos and
touch gestures of users that are captured when the user per-
forms some given tasks on a mobile device (iPhone) [7].
There are 50 users (43 males and 7 females) in the database,
who perform 5 given tasks (eg, typical tasks like scrolling,
reading, viewing images etc.) in three illumination condi-
tions (a room with natural light, a well-lit room and a poorly
lit room). A total of 8036 images, spread over all users and
all sessions, were extracted from these video recordings and
manually annotated with bounding boxes for faces. Of these
6429 images had user's faces in the frame and 1607 were
without faces, or with faces at extreme poses, with eyes and
nose not visible or a very small partial face visible in the
frame, which are all the cases when we can safely say there
is no face present in the frame.

2.2. Training SVMs

For training, 5202 images from the UMD-AA database
is used. Analysing the distribution of face sizes, we find
that the height of faces vary from around 350 to 700 and the

Figure 2. A histogram showing distribution of bounding box
widths and heights.

width varies from 300 to 600. A 2D histogram of the height
and widths of the faces in the dataset are shown in Figure 2.

Now the images are captured at 720p resolution (1280
rows x 720 columns). But since that resolution is too high
for our purpose, we resize it to 640 x 360. Therefore typical
faces range from 175 to 350 rows and 150 to 300 columns
in this reduced resolution.

First we extract deep features from these resized im-
ages by forwarding them through AlexNet [23]. We tap the
network at the 5th convolutional layer (after max-pooling).
The standard AlexNet reduces an image by a factor of 16
in both dimensions. Thus, if the kth input image is of size
pk × qk, the output is of dimensions wk × hk × 256, where
the feature space width wk and height hk are given by (1)

wk = dpk/16e , hk = dqk/16e . (1)

The 3rd dimension is 256 because the 5th layer of
AlexNet uses 256 filters. Given the typical face dimensions
in the last paragraph, they are reduced by a factor of 16
in the feature space to heights ranging from 10 to 22 and
widths ranging from 9 to 19 approximately. Obviously, a
single sized sliding window cannot account for these vary-
ing sizes, therefore we consider windows of width starting
from 8 and increasing to 20 in steps of 2, and height starting
from 9 and increasing in steps of 2 to 23. In total we get 56
different window sizes for which we need to train 56 differ-
ent SVMs. We denote a window by Wij , where i denotes
its window height and j denotes its window width.

Let wk and hk, as defined in (1), denote the width and
height of the deep feature for the face in the kth training
image. The face from the kth training image is used as a
positive sample for the SVM Wij , if Eq. (2) is satisfied.

|i− hk| ≤ tp & |j − wk| ≤ tp, (2)

for some threshold for selecting positive samples, tp. That
is, we select those faces for Wij whose sizes are comparable
and close to the window's dimensions.

For negative samples, we extract random patches of size
i × j from those training samples which have no faces. If
the kth training sample has a face of size wk × hk, and for a
particular window Wij , if (3) holds,

|i− hk| > tn & |j − wk| > tn, (3)

for some threshold for selecting negative samples, tn, then
we extract a few random patches from the kth training sam-
ple that act as negative samples for Wij . That is, if the face
in an image is of a very different size from the current win-
dow Wij under consideration, we extract negative samples
from it, so that Wij gives a negative response of faces of dif-
ferent size. Finally, since the UMD-AA database does not
have many images with no faces, we extract some random
negative patches from images of the UPenn Natural Image
Database [25].

Once we have extracted the positive and negative sam-
ples for each window size, we discard those window sizes
which do not have enough positive examples. Then we con-
vert the three dimensional deep feature patches into a single
dimensional feature vector. Thus for Wij , we get a feature
vector of length i × j × 256. We estimate the mean and
standard deviation of features from each window, which are
used to normalize the features.

Next we train linear SVMs for each window. Since we
get a very long feature vector, it is difficult to train an SVM
with all positive and negative samples together. To make the
training tractable, we divide the samples into batches and
train over many cycles. Specifically, let pij be the number of
positive samples for Wij . Then we choose a small number
of negative samples say nij and train the SVM. Then we

find the scores of the nij negative training samples using the
weights we get after training and retain only those that are
close to the separating hyperplane and discard the rest. We
refill the negative samples batch with new negative samples
and continue this cycle multiple times. This procedure is
performed for each SVM.

2.3. Full Face Detection Pipeline

After the SVMs are trained, we can scan the deep fea-
ture extracted from the given image k in a sliding window
fashion for each SVM. Specifically for an image of size
wk × hk, the deep feature is of hk rows and wk columns
as given by (1) and 256 depth. Therefore, for Wij , we can
slide the window from position (1, 1), which is the top left,
to (hk − i, wk − j). Let (rij , cij) denote the position where
the SVM yields highest score. Then we say that a bounding
box, whose top left is at 16× (rij , cij) and has width 16× j
and height 16 × i is the prediction from Wij . Note that we
multiply by 16, because the feature space's height and width
is approximately 16 times smaller than that of the original
image.

Now that we have 1 prediction from each of the 56
SVMs, we need to combine them to get a single prediction.
A modified version of the non maximal suppression scheme
used by Girshick et al. [26] is used for this purpose. First
we sort the 56 proposals by their scores and then pick the
candidate with the highest score. Boxes that overlap sig-
nificantly with it and have a considerably lower score than
it are ignored. This is continued for the next highest scor-
ing candidate in the list, till all boxes are checked. After
this we process the remaining candidates by size. If a larger
box significantly overlaps a smaller box, but the larger box
has a slightly lower score than the smaller box, we suppress
the smaller box. This is useful in the following scenario: A
smaller SVM may give a strong response for part of a full
face, while the larger SVM responsible for detecting faces
of that size may give a slightly lower response. But clearly
the larger SVM is making the correct prediction, so we need
to suppress the overlapping smaller SVM's candidate. After
performing these suppressions, we pick the SVM's candi-
date that has the highest score. We then choose a suitable
threshold, and if final candidate's score is larger than that,
we declare a face is present at that location, else declare that
there is no face present.

2.4. Salient Features

Sliding window approaches usually work on the princi-
ple of extracting appropriate features and then sliding a win-
dow and deciding if an object is present in that window or
not. The proposed algorithm, DFFDM, can be thought of as
using DCNNs to extract the features for the sliding window
approach. However, to make the sliding window approach
work for detecting faces of varying scales, we need to ex-

tract features across scaled versions of the input image. The
approach followed by Ranjan et al. in [17] is based on ex-
tracting deep features at multiple resolutions of the image
and then training a single SVM to detect faces.

Clearly extracting deep features is a very costly opera-
tion because of the sheer number of convolutions involved.
Passing the image at multiple resolutions through the net-
work increases the workload even more. Therefore, the pro-
posed algorithm passes the image through the DCNN only
once, but trains SVMs of different sizes to achieve scale in-
variance. Also, the different SVM sizes help in detecting
partial faces. For example, tall and thin windowed SVMs
are usually trained with left half or right half faces, while
short and fat windowed SVMs are trained for top half of
faces. SVMs whose aspect ratio match a normal full face’s
aspect ratio are trained on full faces. Thus, different sized
windows help in scale invariance as well as in detecting par-
tial faces.

3. Implementation
Current popular deep learning platforms include Caffe,

Theano and Torch. Although, these platforms have a CPU
only version, they are significantly slower than the GPU en-
abled versions. These platforms have a CUDA based back-
end that offloads the heavy, but parallelizable, computations
involved in a convolutional deep network to an Nvidia GPU.
Nvidia has been actively developing and supporting deep
learning research and has released optimized libraries such
as cuDNN. Thus, although there are multiple frameworks
in the deep learning system, the computational backend is
dominated by CUDA based-code and Nvidia GPUs.

Unfortunately, CUDA is proprietary and works only for
Nvidia’s CUDA enabled GPUs. Therefore, existing deep
learning frameworks are difficult to port on to GPUs made
by other vendors. Current mobile devices have GPUs that
are predominantly provided by Adreno, Mali and PowerVR.
Nvidia’s mobile processor Tegra does power some phones
and tablets, and these devices support CUDA, but the over-
whelming majority of devices do not have CUDA enabled
GPUs.

OpenCL [27] is an open standard, developed by Khronos
Group, to support multiple vendors and facilitate cross plat-
form heterogeneous and parallel computing. All major ven-
dors like Qualcomm, Samsung, Apple, Nvidia, Intel and
ARM conform to the OpenCL standard. Thus OpenCL is a
portable option for implementing convolutional networks in
GPUs other than those made by Nvidia. Recently though,
Google has developed RenderScript to facilitate heteroge-
neous computing on the Android platform.

Mobile devices are obviously not an ideal platform to
perform training on massive datasets. But once the model
has been trained, we can hope to run the forward pass on
mobile platforms. Thus to harness GPUs of mobile devices

to perform the convolution heavy forward pass, we have im-
plemented OpenCL and RenderScript-based libraries. The
OpenCL library is general and should work on any GPU,
while the RenderScript library is specifically tailored for
Android. An Android specific example is the use of Schrau-
dolp’s fast exponentiation [28] to approximately but quickly
compute the normalization layer in AlexNet. Full exponen-
tiation takes a significant amount of time and can become
bottlenecks in weaker mobile GPUs.

The OpenCL and RenderScript libraries implement the
primary ingredients for a basic convolutional deep network:
convolution and activation layers, max pooling layers and
normalization layers, each of which can be parallelized on
GPUs. By appropriately stacking up these layers in the
correct combination and initializing the network with pre-
trained weights we can build a CNN easily. For our purpose
we have implemented the AlexNet network as described
earlier, but we can easily build other networks given its
weights and parameters. For an image of size 360x640, a
single forward pass, running on a machine with 4th gener-
ation Intel Core i7 and Nvidia GeForce GTX 850M GPU,
takes about 1 second for the OpenCL implementation. For
an image of the same size, on the Renderscript implemen-
tation running on different phones, we summarize the run
time results in Table 1. Only about 10% or less of this
run time is due to max-pooling layer, normalization layer,
SVMs and non maximum suppression. The rest of the time
is due to the heavy computations of the convolutional layers.
Continuously running the algorithm on a Nexus 5 drains the
battery at 0.45% per minute, while leaving the phone undis-
turbed drains the battery at around 0.16% per minute.

Phone Runtime GPU CPU
Moto G 36.7 s Adreno

305
Qualcomm
Snapdragon 400

HTC One
(M7)

31.2 s Adreno
320

Qualcomm
Snapdragon 600

Samsung
Galaxy S4

28.0 s Adreno
320

Qualcomm
Snapdragon 600

Nexus 5 11.9 s Adreno
330

Qualcomm
Snapdragon 800

LG G3 10.3 s Adreno
330

Qualcomm
Snapdragon 801

Nexus 6 5.7 s Adreno
420

Qualcomm
Snapdragon 805

Table 1. Run times of DFFDM on different mobile platforms

4. Evaluation and Results
For evaluation, we consider common metrics like

Precision-Recall plots, F1 scores and Accuracy. We com-
pare the performance of our algorithm on the UMD-AA [7]
and MOBIO [12] [11] datasets with Deep Pyramid De-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

ci
si

on

Precision−Recall plot

DFFDM
DP2MFD
DPM

Figure 3. Precision Recall plot corresponding to the UMD-AA
dataset.

formable Part Model (DP2MFD) [17], which is among the
state-of-the-art algorithms for some challenging datasets
like AFW and FDDB, deformable part model for face de-
tection (DPM) [20] and Viola Jones detector (VJ) [21].

We compute detections based on 50% intersection over
union criteria. Let d be the detected bounding box, g be
the ground truth box and s be the associated score of the
detected box d. Then for declaring a detection to be valid,
we need Eq. (4) to be satisfied for some threshold t

area(d ∩ g)

area(d ∪ g)
> 0.5 & s ≥ t. (4)

4.1. UMD-AA Dataset

Results on UMD-AA dataset are summarized in Table 2.

Metric DFFDM DP2MFD DPM VJ
Max F1 92.8% 89.0% 84.1% 67.7%
Max Ac-
curacy

88.0% 82.3% 76.4% 58.0%

Recall at
95% pre-
cision

85.7% 81.7% 72.6% -

Table 2. Comparision of different metrics for various detectors on
UMD-AA database

To check the robustness of the detector, we vary the
intersection-over-union threshold as defined in Eq. (4) from
0.1 to 0.9 and plot the resulting F1 score in Figure 4 and
accuracy in Figure 5. We see that the DFFDM algorithm
gives better performance at higher overlap thresholds too.

A few example positive and negative detections are
shown in Figure 7. The detections are marked in red, while

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IoU threshold

F
1

sc
or

e

F1−Threshold plot

DFFDM
DP2MFD
DPM

Figure 4. Plot showing variation of F1 score with respect to overlap
threshold corresponding to the UMD-AA dataset.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IoU threshold

A
cc

ur
ac

y

Accuracy−Threshold plot

DFFDM
DP2MFD
DPM

Figure 5. Plot showing variation of accuracy with respect to over-
lap threshold corresponding to the UMD-AA dataset.

the ground truth is in yellow. The first row shows a few
examples of positive detections with partial faces and the
second row shows positive detections with pose variations.
The third row shows some false detections, or detections
with score lesser than 1. The detector is quite robust to il-
lumination change and is able to detect partial or extremely
posed faces.

4.2. MOBIO Dataset

Results on MOBIO dataset are summarized in Table 3.
The MOBIO dataset has full frontal faces only, therefore
we get very high performance. DP2MFD beats our algo-
rithm for this dataset, which can be attributed to the fact
that DP2MFD is one of the best algorithms, trained on a
large, varied dataset, and for full frontal faces it has near
perfect performance over multiple scales. For DFFDM,

Figure 6. Examples of positive detections (with pose variations
and occlusion, in first 2 rows) and examples of negative detections
(due to insufficient overlap or low score in 3rd row) on UMD-AA.
The detector's output is in red, while ground truth is in yellow.

SVMs of different sizes were trained, based on the typical
size of faces captured by the front camera. But sometimes
for very large or small faces, the training dataset of UMD-
AA may not have enough samples, therefore for extremely
scaled faces, DFFMD may fail. This can be remedied by
training on a larger database, and also by training SVMs
on more scales. A few example positive and negative de-
tections are shown in Figure 7. The first row shows posi-
tive detections while the second row shows failures. As the
examples show, there are some false detectiosn for really
large faces, of which we did not have many examples in the
UMD-AA training dataset on which DFFDM was trained.

Metric DFFDM DP2MFD DPM VJ
Max F1 97.9% 99.7% 97.8% 92.6%
Max Ac-
curacy

96.0% 99.3% 95.8% 86.3%

Table 3. Comparision of different metrics for various detectors on
MOBIO database

5. Conclusion and Future Directions
This paper presents a deep feature based face detector

for locating faces in images taken by a mobile device's front
camera. Keeping the constrained nature of the problem in

Figure 7. Examples of positive (1st row) and negative (2nd row)
detections on MOBIO. The detector's output is in red, while
ground truth is in yellow.

mind, the algorithm performs only one forward pass per im-
age and shifts the burden of achieving scale invariance to
the multiple SVMs of different sizes. As is expected from
DCNN-based algorithms, it outperforms traditional feature-
based schemes at the cost of a longer run time. Thus al-
though DCNN based methods do not seem suitable for real
time monitoring due to their run times on mobile devices,
they can still be used as a backup in case a simpler detec-
tor fails. However there is much scope of optimizations and
also mobile hardware has been getting more and more pow-
erful, which looks promising.

This study also produced OpenCL and RenderScript
based libraries for implementing DCNNs, that are more
portable and suitable for mobile devices than CUDA based
frameworks currently in popular use.

Future directions of inquiry includes code optimizations
to make the GPU utilization faster thus speeding up the
whole process. Also, we wish to explore simpler DCNNs
that may be more suited to the mobile environment than a
full blown AlexNet. Finally, the libraries used for this al-
gorithm are more portable than CUDA based libraries and
we hope to expand on them to facilitate research on deep
networks on mobile GPUs.

Acknowledgement

This work was supported by cooperative agreement
FA8750-13-2-0279 from DARPA.

References
[1] A. Vance. (2010, Jan) If your password is 123456, just

make it hackme. [Online; posted JAN. 20, 2010]. [Online].
Available: http://www.nytimes.com

[2] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith,
“Smudge attacks on smartphone touch screens,” in Proceed-
ings of the 4th USENIX Conference on Offensive Technolo-
gies, 2010, pp. 1–7.

http://www.nytimes.com

[3] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song,
“Touchalytics: On the applicability of touchscreen input as
a behavioral biometric for continuous authentication,” IEEE
Transactions on Information Forensics and Security, vol. 8,
no. 1, pp. 136–148, Jan 2013.

[4] H. Zhang, V. M. Patel, M. E. Fathy, and R. Chellappa,
“Touch gesture-based active user authentication using dictio-
naries,” in IEEE Winter conference on Applications of Com-
puter Vision. IEEE, 2015.

[5] T. Feng, Z. Liu, K.-A. Kwon, W. Shi, B. Carbunar, Y. Jiang,
and N. Nguyen, “Continuous mobile authentication using
touchscreen gestures,” in IEEE Conference on Technologies
for Homeland Security, Nov 2012, pp. 451–456.

[6] A. Hadid, J. Heikkila, O. Silven, and M. Pietikainen,
“Face and eye detection for person authentication in mobile
phones,” in ACM/IEEE International Conference on Dis-
tributed Smart Cameras, Sept 2007, pp. 101–108.

[7] M. E. Fathy, V. M. Patel, and R. Chellappa, “Face-based
active authentication on mobile devices,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing, 2015.

[8] P. Samangouei, V. M. Patel, and R. Chellappa, “Attribute-
based continuous user authentication on mobile devices,”
in International Conference on Biometrics Theory, Applica-
tions and Systems, 2015.

[9] M. Derawi, C. Nickel, P. Bours, and C. Busch, “Unobtru-
sive user-authentication on mobile phones using biometric
gait recognition,” in International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, Oct
2010, pp. 306–311.

[10] L. Fridman, S. Weber, R. Greenstadt, and M. Kam, “Ac-
tive authentication on mobile devices via stylometry, gps lo-
cation, web browsing behavior, and application usage pat-
terns,” IEEE Systems Journal, 2015.

[11] C. McCool, S. Marcel, A. Hadid, M. Pietikainen, P. Mate-
jka, J. Cernocky, N. Poh, J. Kittler, A. Larcher, C. Levy,
D. Matrouf, J.-F. Bonastre, P. Tresadern, and T. Cootes, “Bi-
modal person recognition on a mobile phone: using mobile
phone data,” in IEEE ICME Workshop on Hot Topics in Mo-
bile Multimedia, Jul. 2012.

[12] C. McCool and S. Marcel, “Mobio database for the icpr 2010
face and speech competition,” Idiap, Idiap-Com Idiap-Com-
02-2009, 11 2009.

[13] D. Crouse, H. Han, D. Chandra, B. Barbello, and A. K. Jain,
“Continuous authentication of mobile user: Fusion of face
image and inertial measurement unit data,” in International
Conference on Biometrics, 2015.

[14] A. Primo, V. Phoha, R. Kumar, and A. Serwadda, “Context-
aware active authentication using smartphone accelerometer
measurements,” in Computer Vision and Pattern Recognition
Workshops (CVPRW), 2014 IEEE Conference on, June 2014,
pp. 98–105.

[15] H. Zhang, V. M. Patel, S. Shekhar, and R. Chellappa, “Do-
main adaptive sparse representation-based classification,” in

IEEE International Conference on Automatic Face and Ges-
ture Recognition. IEEE, 2015.

[16] C. Zhang and Z. Zhang, “A survey of recent advances in face
detection,” Microsoft Research, Tech. Rep. MSR-TR-2010-
66, 2010.

[17] R. Ranjan, V. M. Patel, and R. Chellappa, “A deep pyramid
deformable part model for face detection,” in International
Conference on Biometrics Theory, Applications and Systems,
2015.

[18] S. S. Farfade, M. Saberian, and L.-J. Li, “Multi-view face
detection using deep convolutional neural networks,” in In-
ternational Conference on Multimedia Retrieval, 2015.

[19] V. Jain and E. Learned-Miller, “Fddb: A benchmark for
face detection in unconstrained settings,” University of Mas-
sachusetts, Amherst, Tech. Rep. UM-CS-2010-009, 2010.

[20] X. Zhu and D. Ramanan, “Face detection, pose estimation,
and landmark localization in the wild,” in IEEE Conference
on Computer Vision and Pattern Recognition, June 2012, pp.
2879–2886.

[21] P. A. Viola and M. J. Jones, “Robust real-time face detec-
tion,” International Journal of Computer Vision, vol. 57,
no. 2, pp. 137–154, 2004.

[22] C. Huang, H. Ai, Y. Li, and S. Lao, “High-performance rota-
tion invariant multiview face detection,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 29, no. 4,
pp. 671–686, 2007.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems, p.
2012.

[24] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson,
“How transferable are features in deep neural networks?”
CoRR, vol. abs/1411.1792, 2014. [Online]. Available:
http://arxiv.org/abs/1411.1792

[25] G. Tkaik, P. Garrigan, C. Ratliff, G. Milinski, J. M.
Klein, L. H. Seyfarth, P. Sterling, D. H. Brainard,
and V. Balasubramanian, “Natural images from the
birthplace of the human eye,” PLoS ONE, vol. 6,
no. 6, p. e20409, 06 2011. [Online]. Available: http:
//dx.doi.org/10.1371%2Fjournal.pone.0020409

[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation,” in Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on. IEEE, 2014, pp. 580–
587.

[27] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A
parallel programming standard for heterogeneous computing
systems,” IEEE Des. Test, vol. 12, no. 3, pp. 66–73, May
2010. [Online]. Available: http://dx.doi.org/10.1109/MCSE.
2010.69

[28] N. N. Schraudolph, “A fast, compact approximation of the
exponential function,” 1999.

http://arxiv.org/abs/1411.1792
http://dx.doi.org/10.1371%2Fjournal.pone.0020409
http://dx.doi.org/10.1371%2Fjournal.pone.0020409
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69

	1 . Introduction
	1.1 . Motivation
	1.2 . Related Work

	2 . Deep Features-based Face Detection on Mobile Devices
	2.1 . Dataset
	2.2 . Training SVMs
	2.3 . Full Face Detection Pipeline
	2.4 . Salient Features

	3 . Implementation
	4 . Evaluation and Results
	4.1 . UMD-AA Dataset
	4.2 . MOBIO Dataset

	5 . Conclusion and Future Directions

