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Abstract

Automatic video keyword generation is one of the key
ingredients in reducing the burden of security officers in
analyzing surveillance videos. Keywords or attributes are
generally chosen manually based on expert knowledge of
surveillance. Most existing works primarily aim at either
supervised learning approaches relying on extensive man-
ual labelling or hierarchical probabilistic models that as-
sume the features are extracted using the bag-of-words ap-
proach; thus limiting the utilization of the other features.
To address this, we turn our attention to automatic attribute
discovery approaches. However; it is not clear which auto-
matic discovery approach can discover the most meaning-
ful attributes. Furthermore, little research has been done
on how to compare and choose the best automatic attribute
discovery methods. In this paper, we propose a novel ap-
proach, based on the shared structure exhibited amongst
meaningful attributes, that enables us to compare between
different automatic attribute discovery approaches. We then
validate our approach by comparing various attribute dis-
covery methods such as PiCoDeS on two attribute datasets.
The evaluation shows that our approach is able to select
the automatic discovery approach that discovers the most
meaningful attributes. We then employ the best discovery
approach to generate keywords for videos recorded from
a surveillance system. This work shows it is possible to
massively reduce the amount of manual work in generating
video keywords without limiting ourselves to a particular
video feature descriptor.

1. Introduction

Automatic video analytics is one of the key components
in smart surveillance systems to combat crime and terror-
ism. For example, they can be used to detect anomalous
events to alert security officers [[13]]. In general, surveillance
systems generate a large amount of video data. This makes
finding critical information in surveillance video as chal-
lenging as finding the proverbial needle in a haystack [23]].
Thus automation is highly desirable so one can reduce the
amount of time to find this critical information.

Automatic video analytics have been gaining significant
interest in the research community. Some examples of the
current works are: action recognition [28]], face hallucina-
tion [16], anomaly detection [[L7], video description [18]
and video complex event detection [7, 6].

In this work we tackle the problem of automatic gener-
ation of keywords for video description. Keywords are im-
portant ingredients in generating textual descriptions [27].
More specifically, once the keywords of a video are gener-
ated, the video can be searched using natural language to
find events of interest.

Unfortunately, existing approaches still require a great
deal of manual labelling before the systems can be used to
generate the keywords/description [L1]. For example, the
work proposed by Izadinia et al. in [12]] uses extensive spa-
tio temporal annotations to train action and role models for
action recognition. The approach produces better descrip-
tions than many other approaches. However, the significant
manual labelling severely restricts its scalability. In addi-
tion, when relevant manual labels are not available, then
it is not possible for the system to describe unusual events
which would be extremely useful in anomaly event analysis.

One feasible way to circumvent this is to employ la-
tent hierarchical probabilistic models such as probabilistic
Latent Semantic Analysis (pLSA) [29] or Latent Dirich-
let Allocation (LDA) [31]]. These methods can automat-
ically mine the latent topics which could represent key-
words. Thus, when a topic is inferred in a video, then the
associated text of the topic becomes the keyword. Unfortu-
nately, despite their potential, these methods are based on
the bag of words model requiring explicit modelling of vi-
sual words. Here, each video is assumed to have a collection
of visual words. This explicit assumption may not be feasi-
ble for other recent video features not derived from bag of
word features.

Inspired from the probabilistic latent topic discovery
methods, in this work, we propose a method that can au-
tomatically discover video keywords with significantly less
manual processing. More specifically, several attribute dis-
covery methods such as PiCoDeS [1]] and Spectral Hash-
ing [32] can be employed.

Visual attribute features are binary features indicating
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Figure 1: The comparisons and properties between our approach and other existing methods on video keywords generation.

the presence/absence of visual concepts. For instance a car
can be described as ["has wheels’, ’is metallic’, does not
have legs’]. In practice, we can represent the binary fea-
tures as [1 1 0]. The attribute features trained in one domain
can be reused for another domain with minimum manual
work [9]. As such, a system can be potentially trained to
recognize unseen events [[14]].

Visual attributes have shown promising results in many
works which deal with video related tasks as well
as in some novel problems such as the zero shot learning
problem [[14]].

Once the attribute features are trained, they can be used
to extract keywords. Unfortunately, training attributes fea-
tures also require extensive manual labeling work. This is
because, as each individual visual attribute is a binary clas-
sifier, then one needs to create the labeled training set for
each attribute.

To that end, some researchers have turned their attention
to automatic attribute discovery methods [33]]. These
methods primarily focus on learning an embedding function
that maps the original descriptors into binary code space
wherein each individual bit is expected to represent a visual
attribute. We note that these approaches are also closely re-
lated to hashing approaches [10} (13| [32]]. The difference is
that unlike automatic attribute discovery approaches, hash-
ing methods are primarily aimed at significantly reducing
computational complexity and storage whilst maintaining
system accuracy. Despite many works that have been pro-
posed, it is not clear which methods produce the most mean-
ingful attributes.

Here, we present an approach that allows us to select the
attribute discovering method that discovers the most mean-
ingful attributes. We then find the keywords extracted from
the best method to describe videos recorded from a surveil-
lance system.

The intuition of our approach comes from a speculation
proposed in [19, 20]. More specifically, Parikh et. al. sug-
gest that meaningful attributes tend to occupy a subspace,
here called the Meaningful Subspace, on a manifold. Thus,
we can utilize any given set of meaningful attributes to be
our ‘yardstick’ for comparing various attribute discovery
methods.

Fig. [T)illustrates the differences between our attribute-

based keyword generation approach and the existing ap-
proaches. We can see our approach has two main advan-
tages. First, is it does not require significant manual pro-
cessing. Second, it is not constrained to one particular video
feature.

Contributions. We list our contributions as follows: (1)
We propose an attribute-based video keyword generation
approach by utilizing the attribute discovery method that
discovers the most meaningful set of attributes; (2) To de-
termine the attribute discovery method, we propose a selec-
tion approach enabling us to select which attribute discover
methods provide meaningful attributes; (3) We use and val-
idate our selection method in two known attribute datasets;
(4) Finally, we validate the keywords extracted from the
best attribute discovery method. These keywords can be
used to describe videos recorded from a surveillance sys-
tem.

We continue our paper as follows. Section 2 discusses
related works. Section 3 presents our proposed approach
to compare various attribute discovery methods. Section 4
describes the approach to generate video keywords using
discovered attributes. Section 5 presents experiments and
the section 6 concludes the discussion.

2. Related Works

There are several methods proposed recently that deal
with video keyword and description extraction [26]
[291 3515, 4]. For instance, Rohrbach er al. [27] proposed to
generate a rich semantic representation of the visual content
such as object and activity labels. They employed the Con-
ditional Random Field (CRF) to model all the input visual
components. In [26], they extended their work to a three-
level-of-detail video description scheme. Then they applied
a machine translation framework to generate the natural lan-
guage using the semantic representation as sources. Unfor-
tunately, this model cannot be used to address our problem
due to the extensive manual labelling work required.

To that end, some researchers rely on hierarchical proba-
bilistic models. Wang et al. and Varadarajan et al. [29]
employ LDA and pLSA respectively to perform unsuper-
vised activity analysis. However as mentioned, these meth-
ods can only be applied on the bag-of-words framework.



This means, more powerful features such as Fisher vec-
tors [22]] cannot be used directly.

To the best of our knowledge, there is only one work
that specifically targets automatic video description prob-
lems in surveillance videos. Xu et al. [35] develop a novel
distributed multiple-scene global understanding framework
that clusters surveillance scenes by their ability to explain
each others behaviours. However, their work only focuses
on multiple-scene case and again, utilizes hierarchical prob-
abilistic models.

3. Selecting the attribute discovery method

We first describe the manifold space where the attributes
lie. Then, we use this representation to select the attribute
discovery method that discovers the most meaningful at-
tributes. Technically, we will measure the meaningfulness
of a set of discovered attributes.

3.1. The manifold of decision boundaries

A visual attribute, or simply an attribute, can be repre-
sented as a decision boundary, as it partitions a given set of
N images X = {z;}, into two subsets, ¥ U X~ = X
(1) the set of images/videos where the attribute exists, X'
and (2) the set of images/videos where the attribute does not
exist, X . Hence, in this case, we assume that all attributes
lie on a manifold of decision boundaries [20]].

In our work, we represent an attribute as an N-
dimensional binary vector whose i-th element is the out-
come of the corresponding attribute binary classifier tested
on image x;. Let us consider the corresponding attribute
classifier ¢(-) € R, the function ¢ classifies an input im-
age x; into either the positive or negative set (i.e., XT or
X ™), depending on the sign of the classifier output. We
define z[*! as the attribute representation w.r.t. a set of im-
ages X, 21 ¢ {-1, +1}N, where the 2-th dimension of
zEX] = sign(¢(=x;)) € {—1,+1}. For the sake of clarity,
we write zl*] as z, whenever the context is clear.

Thus, the manifold of decision boundaries w.r.t. X is
then defined as the lower dimensional space embedded in an
N-dimensional binary space, M!¥] ¢ {—1,4+1}". Again,
we write M[*] as M whenever the context is clear.

3.2. Distance from the Meaningful Subspace

Given a set of images X and a set of discovered at-
tributes, D = {2} | 21 € {~1,+1}", here our goal
is to define the distance of the attribute set from the Mean-
ingful Subspace. Ideally, this subspace contains all possi-
ble meaningful attributes. Unfortunately, it is impossible to
enumerate all of them. One possible solution is to use pre-
viously human labelled attributes in various image datasets
such as [2, [19, 20]. These attributes are considered to be
meaningful as human annotators labelled them via the Ama-
zon Mechanical Turk (AMT). We define this set of mean-
ingful attribute as S = {h;}7_,, h; € {-1,+1}".

Since meaningful attributes are assumed to have shared
structure, we could assume that a meaningful attribute must

be able to be described using the other meaningful at-
tributes. For instance, a set of attributes of primary colors
red, green and blue could be used to reconstruct the set of
secondary colors such as yellow, magenta and cyan. The
primary colors could also be used to reconstruct the other
primary colors (e.g. red is not green and not blue).

Unfortunately, a linear combination of attributes may
not lie on the manifold M. More precisely, ), w;z; may
not be a member of M as it is possible that >, w;z; ¢
{—1,4+1}", rather Y, w;z; € RY. Thus, it is non-trivial
to calculate the geodesic distance (i.e., the shortest distance
between two points on the manifold) for determining the
distance between a discovered attribute, z; and the Mean-
ingful Subspace, S. Therefore, we consider an approxi-
mated geodesic distance by assuming the members of man-
ifold M lie in R, In this case both, magnitude and sign
of the classifier output values are considered. Thus, the ap-
proximated geodesic distance is defined as:

min || Ar — z||3, (1)

where the matrix A € RY > contains the attributes of set S
arranged as column vectors; r € R7*1 is the reconstruction
coefficient vector. The above distance is defined in terms
of the reconstruction error of the attribute z; by the set of
meaningful attributes S. When an attribute is meaningful,
then its reconstruction error is minimized or close to zero
due to the shared structure possessed by the Meaningful
Subspace.

We then define the distance between the set of discov-
ered attributes D and the Meaningful Subspace S on the
manifold M w.r.t. the set of images X as the average re-
construction error:

1
§(D,8; X) = oz min||AR — BI|%, @
where || - || is the matrix Frobenious norm; B € RV*XK

is the matrix of attributes D arranged as column vectors;
R € R7*X is the reconstruction matrix.

The distance in (T) and (Z)) may create dense reconstruc-
tion coefficients, suggesting that each meaningful attribute
should contribute to the reconstruction. A more desired re-
sult is to have less dense coefficients (i.e., less number of
non-zero coefficients). This is because there may be only
a few meaningful attributes required to reconstruct another
meaningful attribute. One possible way to address this is
to add the convex hull regularization which has been shown
in [3]] to induce sparsity.

When a convex hull constraint is considered, be-
comes:

1
min ||[AR — B||% s.t.

6cvx<DaS;X) = E R

R(i,j) >0

J
ZR(@,-) =1

The above equation basically computes the average distance
between each discovered attribute z; € D and the convex

3)



hull of §. The above optimization problem could be solved
using the method proposed in [3]]. In our approach, we as-
sume that the lower the distance of a set of discovered at-
tributes to a meaningful subspace, the more meaningful the
attributes will be.

4. Generating keywords using discovered at-
tributes

Once meaningful attributes are discovered, one can ex-
tract the attribute features from the given data. However,
one still needs to name the attributes. Despite this manual
process, we argue that the manual process for naming mean-
ingful attributes is significantly easier and quicker than the
manual process of labelling images/videos to train attribute
features.

One can name an attribute by first extracting the attribute
features from a given set of images. As previously men-
tioned, each attribute divides any set of images/videos into
two groups: the group of images in which the visual at-
tribute is present (the positive class) and the group of im-
ages/videos in which the visual attribute is absent (the neg-
ative class).

Some attributes may have similar names. In this case,
these attributes are considered as duplicate and therefore
they are merged.

5. Experiment

In this section, we validate our proposed approach and
evaluate the accuracy of the keywords extracted from the
best discovered method to describe videos.

In the first part, we evaluate the ability of our approach to
measure the meaningfulness of a set of attributes. Then, we
use our proposed approach to evaluate attribute meaningful-
ness on the attribute sets generated from various automatic
attribute discovery methods such as PiCoDeS [[1] as well as
the hashing methods such as Spectral Hashing (SPH) [32]
and Locality Sensitivity Hashing (LSH) [[15]]. For this case,
two datasets will be utilized: (1) a-Pascal a-Yahoo dataset
(ApAy) [9]I; (2) SUN Attribute dataset (ASUN) [21].

In the second part of our experiment, we apply the best
attribute discovery method to discover keywords from a
surveillance dataset. In this setting, we utilize the UT Tower
aerial view dataset (UTTower) [8]]. The efficacy of the key-
words are then evaluated.

5.1. Datasets and experiment setup

The following are the detailed description of each im-
age dataset for validating our approach and evaluating the
attribute discovery methods.

a-Pascal a-Yahoo dataset (ApAy) [9] — comprises two
sources: a-Pascal and a-Yahoo. There are 12,695 cropped
images in a-Pascal that are divided into 6,340 for train-
ing and 6,355 for testing with 20 categories. The a-Yahoo
set has 12 categories disjoint from the a-Pascal categories.
Moreover, it only has 2,644 test exemplars. There are 64
attributes provided for each cropped image. In total the

dataset has 15,339 exemplars, 64 attributes and 32 cate-
gories. The dataset provides four features for each exem-
plar: local texture; HOG; edge and color descriptor. These
are then concatenated into a 9,751 dimensional feature vec-
tor. We use the training set for discovering attributes and
we perform our study in the test set. More precisely, we
consider the test set as the set of images &'

SUN Attribute dataset (ASUN) [21] — ASUN is a fine-
grained scene classification dataset consisting of 717 cate-
gories (20 images per category) and 14,340 images in to-
tal with 102 attributes. There are four types of features
provided in this dataset: (1) GIST; (2) HOG; (3) self-
similarity and (4) geometric context color histograms (See
[34] for feature and kernel details). From 717 categories, we
randomly select 144 categories for discovering attributes.
As for our evaluation, we random select 1,434 images
(i.e., 10% of 14,340 images) from the dataset. It means,
in our evaluation, some images may or may not come from
the 144 categories used for discovering attributes.

For the first experiment, we apply the following pre-
processing described in [1]. We first lift each feature into
a higher-dimensional space approximating the histogram
intersection kernel by using the explicit feature maps pro-
posed by Vedaldi and Zisserman [30]. More precisely, each
feature is mapped into the space three times larger than
the original space. This effectively allows us to apply lin-
ear classifiers in the explicit kernel space [1l]. After the
features are lifted, we then apply PCA to reduce the di-
mensionality of the feature space by 40 percent. This pre-
processing step is crucial for PiCoDeS as it uses lifted fea-
ture space to simplify their training scheme while maintain-
ing the information preserved in the Reproducing Kernel
Hilbert Space (RKHS). Therefore, the method performance
will be severely affected when lifting features are not used.
In our empirical observations (results not presented), we
also found that lifted feature space gives positive contribu-
tions to the other methods.

Each method is trained using the training images to
discover the attributes. Then we use the manifold M
wrt. the test images for the evaluation. More pre-
cisely, each attribute descriptor is extracted from test images
(i.e., z1, zp € {—1,1}", where N is the number of test im-
ages). For each dataset, we use the attribute labels from
Amazon Mechanical Turk (AMT) to represent the Mean-
ingful Subspace, S.

UT Tower aerial view activity classification dataset
(UTTower) [8] — consists of 108 low-resolution video se-
quences from 9 types of actions. Each action is performed
12 times by 6 individuals. The dataset is composed of two
types of scenes: concrete square and lawn. There are 4
actions in the concrete square scene, they are “pointing”,
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“standing”, “digging”, “walking” and 5 actions in the lawn
scene: “carrying”, “running”’, “wavel”, “wave2”, “jump-
ing”. Ground truth labels for all actions videos are provided
for the training and the testing.

For the second experiment, we use manifold feature pro-
posed in [36] to extract visual information from the surveil-
lance videos in the dataset. The video frames were first

downsized into 16 x 16 and then Grassmann points on



G128, were generated by performing the SVD on the nor-
malized pixel intensities of 8 successive frames. In total,
there are 216 manifold points. Note that, the features are
not derived from the bag-of-words framework. It is also
noteworthy to mention that our work is not primarily aimed
to study feature discriminative power and robustness. Al-
though, it is generally assumed that better features may pro-
vide more meaningful attributes, further studies are required
in the future.

5.2. Attribute meaningfulness evaluation

In this experiment, our aim is to verify whether the pro-
posed approach does measure meaningfulness on the set
of discovered attributes. One of the key assumptions in
our proposal is that the meaningfulness is reflected in the
distance between the meaningful subspace and the given
attribute set, D. That is, if the distance is far, then it
is assumed that the attribute set is less meaningful, and
vice versa. In order to evaluate this assumption we create
two sets of attributes, meaningful and non-meaningful at-
tributes, and observe their distances to the meaningful sub-
space.

For the meaningful attribute set, we use the attributes
from AMT provided in each dataset. More precisely, given
manually labelled attribute set S, we divide the set into two
subsets S* U 82 = S. Following the method used in Sec-
tion we use S* to represent the Meaningful Subspace and
consider S? as a set of discovered attributes (i.e., D = S2).
As human annotators are used to discover S2, these at-
tributes are considered to be meaningful. We name this as
the MeaningfulAttributeSet.

For the latter, we create attributes that are not meaning-
ful by random generation. Note that random generation is
important to ensure the division is not subjective. More pre-
cisely, we generate a finite set of random attributes /. As
the set A/ is non-meaningful, it should have significantly
large distance to the Meaningful Subspace. We name this
set as NonMeaningfulAttributeSet. Furthermore, we pro-
gressively add random attributes to the set of attributes dis-
covered from each method, to evaluate whether the distance
to Meaningful Subspace is enlarged when the number of
non-meaningful attributes increases.

Fig. ?? presents the evaluation results where the meth-
ods are configured to discover 32 attributes. From the re-
sults, it is clear that MeaningfulAttributeSet has the closest
distance to the Meaningful Subspace in all datasets. As ex-
pected the NonMeaningfulAttributeSet has the largest dis-
tance compared with the others. In addition, as more ran-
dom attributes are added, the distance between the sets of
attributes discovered for every approach and the Meaning-
ful Subspace increases. These results indicate that the pro-
posed approach could measure the set of attribute meaning-
fulness. In addition, these also give a strong indication that
meaningful attributes have the shared structure.

The results presented in Fig. ?? suggest that PiCoDeS
consistently discovers the most meaningful attributes on
both datasets. SH is the second best method to discover
meaningful attributes. PiCoDeS utilizes max-margin frame-
work to discover the attributes whereas SH uses spectral re-

laxation to preserve the similarity between data points in
the binary space. In addition, as expected LSH employing
random projection approach, is one of the worst performing
methods.

5.3. Generating video keywords using discovered
attributes

In this experiment, we will follow the strategy proposed
in section 4} Here we ask experts to perform the attribute
naming task for the three attribute discovery methods such
as PiCoDeS, SH and LSH configured to discover 16 at-
tributes on the UTTower surveillance video dataset. Then
we will use the named attributes as the keywords. To make
our work reproducible, our experiment results will be avail-
able onlin after this work is published.

Note that we only take into account the attributes that can
be named by experts. This means, any attribute that cannot
be named will not be considered as a valid keyword. After
performing this task, we found that there are 9 attributes for
PiCoDeS, 8 attributes for SH and 3 attributes for LSH that
can be named. These results suggest that our proposed ap-
proach is capable of guiding us in selecting the best attribute
discovery methods as the experts are able to name most of
the discovered attributes by PiCoDeS and SH.

Once attributes are named, the next step is to generate
keywords of each video. Technically, the attributes are ex-
tracted from each video. Then, the keywords are generated
using the terms of the associated positive attributes..

We evaluate the quality of the generated keywords to de-
scribe each video. We then ask human experts to determine
whether a keyword is suitable to describe a video.

Fig. 2] presents two examples where videos are described
with suitable keywords and two examples where videos
are described with unsuitable keywords. The examples de-
picted in Fig 2] (a), (b), (c) and (d) are videos of digging,
standing, carrying and waving, respectively.

We count the number of keywords correctly used in each
video description and compute the correct hit rate for the
whole testing set. The correct hit rate for PiCoDeS, SPH
and LSH are 77.7%, 55.9% and 48.3%, respectively. This
further validates our proposed approach to measure attribute
meaningfulness. In addition, it also shows that using the
best attribute discovery method, we can automatically gen-
erate keywords for videos in a more economical way. Fig.[3]
presents further results in this evaluation. In particular, (a)
and (b) report the hit rate for PiCoDeS of each attribute and
action, respectively. The plots in (c) and (d) are the hit rate
for SH of each attribute and action, respectively. Most at-
tributes discovered by PiCoDeS have more than 70% hit
rate with two attributes having 100% hit rate (all correct).
The hit rate for each action also demonstrates an overall
good hit rates with most videos being described with hit
rate more than 60%. The results for SH are worse than Pi-
CoDeS.

Analysis on cost and time saving in the manual process
Here we compare the time and cost required to perform
manual work between our method and the traditional ap-

Ihttp://www.itee.uq.edu.au/sas/datasets
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Figure 2: The demonstrations of video description based
on attributes from PiCoDeS. (a) and (b) are two samples of
videos in which most keywords are suitable; (c) and (d) are
two of the worst ones.

proaches requiring extensive manual processing. The time
and cost analysis is based on the AMT Human Intelligent
Task (HIT). One HIT normally comprises a set of tasks that
human could do to label one image/video data. Let .J be
the number of keywords and N be the number of train-
ing samples which is usually very large number. In our
method, we are only required to name the discovered at-
tributes. Hence, our method require just J HITs. On the
other hand, traditional approaches require at least N HITs
as these require all training samples to have the keywords.
Indeed as J << N, then our method massively reduces the
time and cost required as it has much less number of HITs.

6. Conclusion

In this paper, we described an attribute-based video key-
word generation approach. Our approach utilized an exist-
ing automatic attribute discovery approach to discover the
keywords. Since there have been numerous attribute dis-
covery approaches in the literature, we devise a selection
method, based on the shared structure exhibited amongst
meaningful attributes, that enables us to compare the ef-
ficacy between different automatic attribute discovery ap-
proaches. In particular, we devised a distance function
that measures the meaningfulness of a set of discovered at-
tributes. We used our approach to select the methods that
are most likely to discover meaningful attributes. Then, we
validated our approach on two attribute datasets. The re-
sults showed that our approach is able to determine which
automatic attribute discovery method can generate the most
meaningful keywords or attributes. Finally, we showed how
the discovered attributes were used to generate keywords for
videos recorded from a surveillance system.

The proposed approach indicates that it is possible to
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Figure 3: The detailed results of precision of each attribute
and precision of each action for PiCoDeS in the first row
and SH in the second row. The horizontal axis in (a),(c) in-
dicates the ID of discovered attributes and the ones in (b),(d)
indicate the ID of actions. The vertical axes represent hit
rate (precision); al is ’person not walking or running’, a2
is ’person not jumping’, a3 is “person lower part station-
ary’, a4 is “person’s four limbs not moving’, a5 is *person’s
both arms moving’, a6 is ’person pointing’, a7 is “person
not waving both arms’, a8 is ’concrete square’, a9 is ’lawn
scenes’, cl is "person standing’, c2 is *person not walking or
running’, c3 is ’person not moving both arms’, c4 is ’person
not carrying’, ¢5 is ’person arms not moving separately’, c6
is ’person not moving arms’, ¢7 is “person holds arm in air’,
c8 is ’person carrying’.

dramatically reduce the amount of manual work in generat-
ing video keywords without limiting ourselves to arbitrary
preselected video feature descriptors.

We note that our proposed selection method only indi-
cates the best attribute discovery method. Thus, a more
quantitative approach may be required in future study. In
addition, various regularizations such as the ¢; regulariza-
tion for (I) and (@) will be explored in the future. The ¢,
constraint is an explicit regularization to induce sparsity. As
to the robustness aspect, our proposed system depends on
the robustness of the selected attribute discovery methods,
however, further studies on various surveillance datasets are
required to fully understand the proposed system robust-
ness.
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