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Abstract

Soft biometrics are human describable, distinguishing
human characteristics. We present a baseline solution to
the problem of identifying individuals solely from human
descriptions, by automatically retrieving soft biometric la-
bels from images. Probe images are then identified from a
gallery of known soft biometric signatures, using their pre-
dicted labels. We investigate four labelling techniques and a
number of challenging re-identification scenarios with this
method. We also present a novel dataset, SoBiR, consist-
ing of 8 camera viewpoints, 100 subjects and 4 forms of
comprehensive human annotation to facilitate soft biomet-
ric retrieval. We report the increased retrieval accuracy
of binary labels, the generalising capability of continuous
measurements and the overall performance improvement of
comparative annotations over categorical annotations.

1. Introduction

Biometric verification is now prevalent in today’s soci-
ety, through facial recognition passport programmes and
mobile devices supporting fingerprint recognition. While
humans are able to effortlessly describe and identify each
other through visual cues, performing automatic visual
identification still proves challenging. We seek to iden-
tify individuals from video surveillance footage using only
human descriptions obtained from eye witness testimonies,
surveillance operators and ‘super-recognisers’.

Problem. The topic of re-identification has gained much
recent interest, yet a truly generalised solution is still to be
proposed. Almost all approaches that claim high recogni-
tion rates do so by matching images directly to one another
[14, 2], or by fusing auxiliary semantic attributes with low-
level image features [29, |, 13]. Though these provide state-
of-the-art re-identification performance on prevalent bench-
mark datasets, their scope is limited to situations where an
image of the probe subject is available from a directly cor-
responding camera and environment.
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Figure 1: Pre-processed SoBiR image viewpoint examples.

However, surveillance operators often need to search
video footage given only a human description of a suspect.
Therefore, we need a novel solution to automatically de-
scribe and identify suspects from images, without relying
on image matching techniques or hard biometrics.

Our problem encapsulates three main challenges: deal-
ing with the enormous variability in CCTV images, improv-
ing accessibility for human operators and investigating a
representative variety of surveillance scenarios.

Proposal. To move towards solving these problems, we
advocate performing recognition solely in a ‘semantic
space’ that is understood by human operators, in order to
provide better generalised and widely applicable solutions.

We propose to automatically retrieve global and body
soft biometric traits from images, which are then used to
match and identify subjects. Unlike traditional hard biomet-
rics, soft biometrics are formed as a collection of human

describable, distinguishing visual features [19, 5, 4]. Soft
traits (e.g gender, height etc.) are derived from salient and
permanent, global and body characteristics [19, 25, 24, 16],

setting them apart from other mid-level semantic attributes.



Soft biometrics can also be deployed where other biomet-
rics cannot, having stronger invariance to human pose, cam-
era distance and illumination changes [19, 11].

We present a novel dataset with which to investigate sev-
eral re-identification scenarios, including both images [26]
(Figure 1) and a comprehensive set of soft biometric an-
notations [25, 16]. Other widely used benchmark datasets
(e.g. VIPeR [9] and GRID [!5]) only allow ‘one-shot’ re-
identification results to be reported from one pair of cam-
eras. By exploring a number of varied re-identification sce-
narios, we can better understand the generalising capability
and discriminative power of our techniques.

Specifically, we investigate absolute binary, absolute cat-
egorical, relative binary and relative continuous labelling
techniques, derived from two sources of soft biometric an-
notation (Table 1). We can therefore compare the strengths
and weaknesses of each labelling and annotation method
when performing retrieval and recognition.

Our contributions are as follows:

The publicly accessible SoBiR dataset', cataloging
100 subjects captured from 8 camera viewpoints, compris-
ing of 1600 images, described using 12 soft biometric traits
through categorical annotations, comparative annotations
and derived binary and continuous labels.

A baseline approach to soft biometric retrieval and
recognition for four labelling methods, including soft trait
optimisation.

A performance analysis of each labelling method, in
traditional one-shot, multi-shot, disjoint re-identification
and zero-shot identification scenarios, providing evidence
of the improved performance using comparative annota-
tions over categorical annotations.

2. Related work

Our work follows several fields, most notably soft bio-
metric recognition and pedestrian re-identification, along-
side image attribute classification and pairwise ranking
techniques.

Soft biometric recognition. Nixon et al. and Dantcheva
et al. provide comprehensive surveys exploring the topic of
soft biometrics [19, 4]. Earlier soft biometric studies focus
on annotating a set of absolute categorical labels, analysing
the mutual exclusivity and identifying ability of each soft
trait [25, 5]. Later studies collect comparative annotations,
by comparing pairs of subjects in a more objective manner
[24, 16, 11]. Our dataset and investigation incorporates both
forms of annotation. Dantcheva et al. is one of the earliest
works to perform soft biometric retrieval and identification,
showing promise for future work [5].

ISoBiR1.0 is available at
http://users.ecs.soton.ac.uk/dmclgld/#isba-16

Annotation [ Measure [ Label type [ Combinations [ Balanced ]

Categorical Absolute | Multi-class 23592960 No
Categorical Absolute | Binary 4096 No
Comparative | Relative Continuous 0o -

Comparative | Relative Binary 4096 Yes

Table 1: Labelling method characteristics.

Relative attributes. In order to classify image attributes
relative to one another, Parikh et al. proposes an extension
to the RankSVM algorithm including similarity constraints
[20]. As a consequence, many studies use this algorithm
to perform subject ranking given pairwise comparisons [ 17,
], and it is used to model our dataset’s relative continuous
and relative binary labels, following Martinho et al. [16].

Attribute classification. There have been many works on
classifying attributes directly from images, for facial veri-
fication [12], demography from face [10], gender estima-
tion from face and body [18], describing faces and scenes
[20], describing clothing [ | 1] and describing texture [17]. A
large portion of related research is also dedicated to recog-
nising attributes from pedestrians and surveillance footage
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Attribute re-identification. We extend Layne et al.’s
‘zero-shot’ identification scenario, where only a probe se-
mantic description is available for identification, without an
image [13]. We also implement similar low-level feature
descriptors to Gray et al. and Prosser et al. [9, 23].

Recent advances in neural networks have lead to even
more improved human attribute classification approaches
[21, 29]. Zhu et al. propose a multi-label convolution neu-
ral network to jointly predict 21 attributes, also reporting
re-identification results fused with image features [29].

Re-identification challenges. Gong et al. discuss the
challenges and limitations of ‘closed-world’ datasets as ap-
posed to ‘open-world’ re-identification scenarios [8]. We
explore some of the questions raised in this paper, with re-
gards to inter- and intra-class variation, small numbers of
samples per subject, and generalising capability across cam-
eras, using our relatively small, but highly detailed dataset
of 100 subjects. Vezzani et al. highlight the application
benefits of measuring a biometric profile, enabling both re-
identification and biometric recognition [27]. Finally, Wang
et al. present a strong argument for using semantic features,
stating qualities such as: viewpoint independence, robust-
ness and capacity for human interpretation [28].

3. Soft Biometric Retrieval Dataset

The Soft Biometric Retrieval (SoBiR) dataset is designed
to be a challenging, varied and flexible framework with


http://users.ecs.soton.ac.uk/dmc1g14/#isba-16

Comparative [16]

Categorical [25]

Trait [More A, More B] [0,1,2,3,4,5,6,..]
Gender [Feminine, Masculine] [Female, Male]
Age [Old, Young] [Infant, Pre Adolescence, Adolescence, Young Adult, Adult, Middle Aged, Senior]
Height [Tall, Short] [Very Short, Short, Average, Tall, Very Tall]
Weight | [Heavy, Light] [Very Thin, Thin, Average, Big, Very Big]
Figure [Fat, Thin] [Very Small, Small, Average, Large, Very Large]
Chest size | [Big, Small] [Very Slim, Slim, Average, Large, Very Large]
Arm thickness [Thick, Thin] [Very Thin, Thin, Average, Thick, Very Thick]
Leg thickness [Thick, Thin] [Very Thin, Thin, Average, Thick, Very Thick]
Skin colour [Dark, Light] [White, Tanned, Oriental, Black]
Hair colour [Dark, Light] [Black, Brown, Red, Blond, Grey, Dyed]
Hair length [Long, Short] [Shaven, Short, Medium, Long]
Muscle build | [Muscle, Lean] [Very Lean, Lean, Average, Muscly, Very Muscly]

Table 2: Lexicon of comparative and categorical traits and labels included in SoBiR.

which to perform soft biometric retrieval for person re-
identification. Rather than pursing ever larger image col-
lections, datasets like SoBiR are essential for the explo-
ration of diverse and innovative re-identification solutions
and scenarios. Using SoBiR’s highly detailed soft biomet-
ric descriptions opens up new avenues for re-identification
solutions that are not constrained to image matching.

Image set. The dataset images are derived from a subset
of subjects and images captured as part of the Southamp-
ton University Multi-Biometric Tunnel dataset [26]. The
original dataset captured images of subjects walking along
a multi-biometric tunnel, from 6 pairs of cameras. We se-
lect 2 images for all 100 subjects, sampled at random dis-
tance from 4 pairs of cameras; front, back, side and top
views, exhibiting variations in pose and image quality (Fig-
ure 1). Camera placements aim to replicate a high num-
ber of surveillance viewpoints as subjects move through the
tunnel, capturing both left and right-hand sides in a con-
strained environment.

Each camera pair can be used to perform traditional
‘one-shot’ re-identification, similarly to VIPeR and GRID.
Our images have more consistent lighting and higher reso-
lution, pre-conditioned with basic background subtraction.

An all view set combines image samples from each
camera, enabling multi-shot re-identification, disjoint re-
identification and zero-shot identification scenarios. We
supply two dataset forms, one with only background sub-
traction applied, original image dimensions and no other-
preprocessing. The second is a pre-processed image set,
used for the retrieval experiments in this report.

Image pre-processing. Maintaining their aspect ratio,
images are first scaled to a height of 256 pixels. A hor-
izontal mid-point is calculated for each image, taking the
median value of each row’s mean non-white pixel location.
Scaled images are then placed in a 256x256 white square,
aligning the horizontal mid-point to 128 pixels across. Any
image pixels falling outside the 256x256 area are cropped.
Lastly, adaptive histogram equalisation is applied [22].

Soft biometric annotations. We draw the ground truth
soft biometric labels from two sources of human annotation.
Table 2 details the 12 soft traits and corresponding lexicons
originally annotated for our dataset’s 100 subjects. Table 1
outlines the four modes of labelling analysed in this report.

Absolute categorical annotations are presented by
Samangooei et al., collecting a set of 23 global, body and
head traits using a multi-class annotation system [25]. Ab-
solute binary labels are derived from the categorical multi-
class annotations by combining each label class into two se-
mantic groups, e.g. shorter and taller, lighter and darker etc.
Binary groupings are formed such that the number of anno-
tations for the new binary labels are as equally balanced as
possible.

The second set of annotations are provided by Martinho
et al., collecting pairwise subject comparisons, through an
online crowdsourcing task using a 5-point, bi-polar scale
[16]. Relative continuous values are derived from the pair-
wise annotations using the RankSVM formulation with
similarity constraints, detailed by Parikh et al. [20]. Nor-
malised values (between 0.0 and 1.0) are then split at 0.5,
forming perfectly balanced relative binary labels. Though
these new binary annotations are more coarse, they are still
relative measures in their own right.

4. Approach

In this section we present a baseline approach for auto-
matic soft biometric label retrieval and recognition. First,
we clarify some key definitions:

Retrieval is the process of learning and predicting soft
biometric labels or signatures from probe images.

Recognition is the process of matching soft biometric
signatures, between previously unknown probe subjects and
known gallery subjects.

Identification is the amalgamation of retrieval and
recognition, to generate probe signatures, then identify
them from a gallery of known subject signatures.

We retrieve soft biometric signatures from images by
training an ensemble of prediction algorithms. Soft bio-
metric labels are learnt between ground-truth annotations



and low-level image features, generated by hand-crafted de-
scriptors. During the first round of training we search for
predictor parameters and soft trait weightings to improve
retrieval and optimise recognition stages respectively.

4.1. Image feature descriptor

We generate a 4704 length feature vector, from each
pre-processed 256x256 image, taking inspiration from the
Ensemble of Localised Features (ELF) descriptor [9], and
Prosser et al.’s horizontal strips [23].

Images are split into six equally sized horizontal strips,
each described by 9 colour channels; RGB, HSV, Lab
(CIELAB), and 16 Gabor [6] luminance channel texture fil-
ters; 0 € {0,%,2,3%} 0 € {1,3}, A € {0.05,0.25}.
Channels are represented using 16 bins, producing a total of
400 features per strip. A Histogram of Oriented Gradients
descriptor [3] is applied to the entire image, using 9 orienta-
tions, 16x16 pixels per cell and 1 cell per block, represented
in a further 2304 features.

Images are mirrored vertically at run-time, generating a
second descriptor to provide higher viewpoint invariance.

4.2. Soft Biometric Retrieval

We train M = 1, ..., 12 learning functions to predict soft
biometric labels y = {y!"}, given a set of training im-
age features {x;} and ground-truth annotations a = {a"},
where m € M. We use the Extra-Trees (ET) supervised en-
semble learning algorithm [7], for its reduced variance and
computational efficiency. For binary and multi-class (cate-
gorical) labelling we use an ET classifier, while for contin-
uous labelling we use an ET regressor.

During the first round of training we perform a parameter
grid search with 2-fold cross validation. The best parameter
set for each soft trait predictor is chosen by evaluating the
loss function norm ||L||. We search for both the number
of estimators n.s; € {1,5, 10,50, 100,200, 300,400} and
maximum features n,,q,, € {auto, sqrt,log}. For binary
and multi-class labelling, we define L as the Hamming loss
function between ground-truth and predicted labels;

1
262 = (g S orfaf) s € )

where n" is the number of classes for soft trait m. For
continuous labelling, we define L as the mean squared error;

1
L(y,a) = ( Z(yz’” —a™)?:m e M) 2)
i
4.3. Soft Biometric Recognition

Given {z,} retrieved soft biometric signatures, we aim
to recognise all probe subjects p € P, from the gallery of
G =1, ...,100 subject signatures {s, }, where g € G.

No. Samples | No. Subjects | No. Cameras
Experiment Tr. Te. Tr. Te. Tr. Te.

One-shot re-id. 100 100 100 100 1 1
Basic re-id. | 700 100 100 100 7 1
Disjoint re-id. | 600 100 100 100 6 1
Zero-shotid. | 728 144 91 9 8 8

Table 3: Experiment train (Tr.) and test (Te.) set statistics.

Soft traits do not have equal discriminative ability (dis-
cussed in Section 5.1), being affected by retrieval predic-
tion accuracy, ground-truth annotation method and mea-
surement precision. Therefore, in order to optimise recog-
nition, we weight each soft trait. We introduce an objective
rank minimisation function to find weight vector w, where
|w| = M, run on the first round of training;

1wl L(z,,s,)|| < |[WTL,[| |
O:Z Z , H\Zp: g P
0, otherwise

peEP \geqG
3)

where L, is the loss vector between the predicted and
ground-truth signatures for probe p. By setting 0 < A < 1,
we give a slight precedence to reducing already low ranks
over higher ranks. We empirically choose A = 0.8. Rather
than attempting to improve the average rank, or simply rank
1 for all samples, our formulation produces robust solutions,
even when allowed only one training iteration. This method
is an alternative to Layne et al.’s expected rank formulation
[13]. To prevent overfitting, we initialise w to randomly
distributed values between 0.5 and 1.5.

S. Experiments

To showcase our baseline soft biometric identification
methods and the extent of the SoBiR dataset, we explain
and analyse two sets of experiments. The goal of each ex-
periment is to assess how accurately our retrieval methods
can identify probe suspects. A probe soft biometric signa-
ture is predicted from an unseen image and matched against
the gallery of all known soft biometric subject signatures.

All experiments follow the same format after defining a
train-test split criteria (Table 3). Train-test sets are formed
through 11-fold cross validation. The first fold is used as a
setup stage for learning soft trait predictor parameters and
optimisation weights. Results are reported as an average of
the remaining 10 folds, by matching retrieved soft biometric
signatures against ground-truth annotations.

One-shot re-identification. We perform one-shot re-
identification across the initial four pairs of cameras, ob-
serving the performance of our four labelling methods in
a more traditional environment. In each experiment, the
dataset consists of one camera pair, resulting in two images



Labelling [ r=1 r=5 r=10 r=25 r=50

r=75 [ nAUC [ r+ |

(a) One-shot re-identification (average across camera pairs)

Abs. Cat. 9.3 294 438 68.5 88.8 96.7 78.9 5.1

Abs. Bin. 8.4 27.9 43.0 69.9 89.6 97.2 79.4 4.9

Rel. Bin. | 12.5  36.0 53.7 79.3 94.0 99.0 84.4 1.5

Rel. Cont. 9.4 34.9 53.5 80.4 95.4 99.3 84.8 4.9

(b) Multi-shot re-identification

Abs. Cat. 157 40.8 54.3 77.1 92.5 98.0 83.4 7.1

Abs. Bin. 133 37.0 53.9 75.2 93.1 97.9 83.2 6.1

Rel. Bin. | 20.1  49.5 77.1 86.3 95.4 99.4 88.1 1.0

Rel. Cont. 103 324 50.5 79.2 94.8 99.1 84.2 3.8

(c) Disjoint re-identification

Abs. Cat. 122 322 45.0 67.9 85.5 95.9 78.1 6.0

Abs. Bin. 8.3 26.9 43.3 67.5 86.6 96.5 78.2 5.4

Rel. Bin. | 13.1 37.0 552 77.5 91.6 98.0 83.1 0.9

Rel. Cont. 7.5 31.1 47.1 74.4 91.5 97.6 81.5 3.7
(d) Zero-shot identification

Abs. Cat. 1.4 8.6 18.1 36.3 64.5 87.8 60.4 3.9

Abs. Bin. 1.7 152 282 48.4 71.1 90.0 66.5 3.5

Rel. Bin. 2.6 15.8 26.4 52.3 81.4 94.1 70.8 2.3

Rel. Cont. 6.7 16.4 27.9 53.9 774 93.6 70.2 4.4

Table 4: Recognition scenario CMCs % (top values em-
boldened), nAUC denotes normalised Area Under Curve
(%), r+ denotes average rank optimisation.

per subject. Train-test sets each contain one image per sub-
ject, randomly sampled from alternate cameras.

Assorted re-identification scenarios. The second set of
experiments exemplify simulations of more real-world sce-
narios with SoBiR. We now use all 8 cameras from the all
view set, resulting in 8 images per subject. Multi-shot re-
identification randomly samples 1 image per subject for the
test set, allocating the remaining 7 to the training set. Dis-
joint re-identification randomly samples 1 image per sub-
ject, but allocates only 6 of the remaining images to the
training set, excluding the test set’s alternate camera from
the training set. In this way, probe images will vary highly
to the training images for a corresponding subject. Finally,
zero-shot identification is the most challenging scenario,
simulating an eye witness description of a subject, without
relevant training image examples. Train-test sets are split
across subjects, with all images for 9 randomly sampled
subjects allocated to the test set and remaining 91 subjects’
images allocated to the training set.

5.1. One-shot re-identification results

Table 4a and Figure 2a reveal how relative labelling
methods outperform absolute methods during one-shot re-
identification. Relative binary labelling performs strongest
overall, especially at lower ranks. However, both binary
derivations attain lower recognition rates than their coun-
terparts for top and side camera viewpoints, supposedly less
invariant to camera angle and pose.

Table 4 also includes the average rank improvement after
optimisation. Interestingly, relative binary gains the least
from optimisation, while still producing the best results. We
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Figure 2: Recognition scenario CMCs +std (ranks 1-25).

[ Soft trait weightings+-std
Trait | Abs. Cat. | Abs. Bin. [ Rel. Bin. [ Rel. Cont. [ Average |

Gender 2.7+0.3 2.6+0.6 1.3£0.3 2.0+1.1 2.1+0.6
Height 0.9+0.4 1.0£0.6 2.3+1.2 2.2+1.7 1.6£1.0
Age 0.0£0.6 0.4£0.7 1.3£1.0 0.2£0.8 0.5+0.8
Weight 0.5£0.7 0.5+0.6 0.5£0.6 0.3£0.2 0.5+0.5
Figure 0.5£0.9 0.5+0.2 1.1£0.9 1.5£0.6 0.940.7
Chest s. 1.1£0.6 0.5+0.7 1.1£0.3 0.1+0.5 0.7+0.5
Arm t. 1.1£0.5 1.54+0.5 1.140.2 0.7£1.6 1.1£0.7
Legt. | -0.1+0.4 0.6+0.3 0.4=£1.0 -0.1£0.8 0.2+0.6
Skin c. 1.8+0.3 1.7+0.5 1.5+0.4 1.6£0.4 1.6+0.4
Hair c. 2.4+0.8 2.54+0.6 2.4+1.0 5.240.6 3.1+0.7
Hair 1. 2.1£0.5 1.7+0.4 1.440.3 3.0+1.3 2.0+0.6
Muscle b. 1.5+0.4 1.3+0.3 0.1£1.9 -0.1+1.0 0.7£0.9

Table 5: One-shot re-identification optimised soft trait
weightings (top four emboldened).

can speculate that less accurate predictions leave more room
for improvement, therefore lower rank optimisation implies
better overall retrieval accuracy.

We report the average soft trait weightings in Table 5, to
best compare intra-label trait salience. We find hair colour
to be most salient, likely due to accurate prediction, being
highly localised in the top descriptor strip. Gender, hair
length and skin colour follow closely, with leg thickness,
weight, age and muscle build being the least discriminative
traits. Intriguingly, height is much more prominent with
relative labelling, suggesting more accurate and precise pre-
dictions as a result of better ground-truth annotations. This
also reciprocates Reid et al.’s findings [24].

5.2. Assorted re-identification scenario results

Figure 2b-d highlights a stark performance contrast be-
tween the remaining re-identification scenarios. Relative



binary labelling again outperforms other methods in multi-
shot re-identification, being able to learn a more precise
model given extra data, especially at lower ranks with (Ta-
ble 4b). On the other-hand, absolute categorical labelling
suffers from lack of relevant training examples in the zero-
shot scenario (Table 4d).

By excluding just one additional training sample per sub-
ject in disjoint re-identification, rank 10 accuracies drop on
average 11.3%, showing a high reliance on similar cam-
era viewpoints (Table 4c). The zero-shot experiment at-
tains even poorer recognition rates, as subjects are mutu-
ally exclusive to either training or testing sets. While our
retrieval methods demonstrate an ability to predict labels
for unseen images of a subject, the zero-shot experiment
highlights their limitations for predicting labels of entirely
unseen subjects.

Zero-shot identification performance exhibits high stan-
dard deviations, causing variations in the best methods at
each rank in Table 4d. However, relative continuous la-
belling achieves more than twice the average rank 1 accu-
racy in this scenario, and is the most consistent labelling
mode across all scenarios.

6. Conclusions

We have presented a novel solution to automatically
describe and identify suspects from images, given only a
human description. Our approach to soft biometric re-
trieval and rank optimisation has been demonstrated using
four semantic labelling methods, and its recognition perfor-
mance has been analysed across a number of challenging
re-identification experiments. We have also illustrated our
publicly available soft biometric retrieval dataset and its use
for simulating real-world re-identification scenarios.

Comparative ground-truth annotations have been shown
to outperform categorical annotations in traditional scenar-
ios, but are yet to fully solve the challenges presented by the
zero-shot identification problem.

Our work opens many avenues for future investigations,
including; joint prediction of soft traits, relative labelling
techniques, low-level feature salience representations and
amalgamating more advanced computer vision and machine
learning algorithms.
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