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Abstract

Designing an end-to-end deep learning network to match
the biometric features with limited training samples is an
extremely challenging task. To address this problem, we
propose a new way to design an end-to-end deep CNN
framework i.e., PVSNet that works in two major steps: first,
an encoder-decoder network is used to learn generative
domain-specific features followed by a Siamese network in
which convolutional layers are pre-trained in an unsuper-
vised fashion as an autoencoder. The proposed model is
trained via triplet loss function that is adjusted for learning
feature embeddings in a way that minimizes the distance
between embedding-pairs from the same subject and maxi-
mizes the distance with those from different subjects, with a
margin. In particular, a triplet Siamese matching network
using an adaptive margin based hard negative mining has
been suggested. The hyper-parameters associated with the
training strategy, like the adaptive margin, have been tuned
to make the learning more effective on biometric datasets.
In extensive experimentation, the proposed network outper-
forms most of the existing deep learning solutions on three
type of typical vein datasets which clearly demonstrates the
effectiveness of our proposed method.

2018 IEEE 4th International Conference on Identity, Secu-
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1. Introduction
With ongoing developments in contact-less imaging sen-

sors, the requirements for vein recognition have been
sharply increasing. Besides being unique, the subcutaneous
vein structures have the added advantage of lying under-
neath the skin surface. This makes visibility to the eyes or
general purpose cameras difficult and hence, this limits the
ease of spoofing if not averting it completely. Back in 2001
[9], authors found uniqueness in blood vessel networks (un-
der the skin) of the same person and dissimilarities among
different individuals and concluded that vein pattern image
can be acquired without direct contact with the hand. Also,
it has been noted that much attention has been paid to the
palm-vein and finger-vein modalities individually, but very
few researchers attempted to address the problem of presen-
tation attack for vascular technology [5]. However, much
recent work has been focused on employing deep convolu-
tional neural networks in various domains, and the field of
biometrics is not an exception. In a very recent study [7],
authors proposed a two-channel CNN network that has only
three convolution layers for finger vein verification.

1.1. Challenges and Contribution

The vein patterns either collected from dorsal or palmer
side of the hand show good connected network and provide
very vast textural information. The acquisition procedures
are convenient and hygienic than other biometric traits. The
major open issues in vein verification are the lack of robust-
ness against outdoor illumination, image quality degrada-
tion, inconsistent ROI segmentation, and matching between
obscure image regions. A few existing image transforma-
tion techniques (such as LBP [15], TCM [13], IRT[6] etc.)
are well proposed in the literature that creates a useful rep-
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Figure 1: Proposed Palm Vein Feature Extraction (FE) N/W

Figure 2: (a) Proposed Palm Vein Matching N/W; (b) CNN based Image Transformation

resentation of image data and helps to improve the matching
task [9]. But no work has been proposed yet that encodes
as well as match the image feature through deep learning
models. Therefore, efforts have to be made to bridge the
gap between deep learning and biometric recognition meth-
ods. To best of our knowledge, this is the first attempt in
which a convolutional encoder-decoder network has been
trained to learn the Texture Code Matrix (TCM) and Image
Ray Transform (IRT) based encoding schemes to obtain the
domain-specific deep features for palm vein.

Major Contributions : The major contribution of this
work has three folds. (i) An end-to-end deep-learning based
vein recognition framework has been designed, which con-
sists of a convolutional encoder-decoder network (CED)
and a Siamese network. (ii) We have trained a convolu-
tional deep encoder-decoder network with merged connec-
tions for learning the TCM transformation and then trained
another similar encoder-decoder network for learning IRT
transformation. In this way, we combine both learned trans-
formation models and train an end-to-end CED model from
the original image to final IRT transformed image. (iii)
Next, a Siamese network has been trained using triplet loss
along with hard-negative mining. This Siamese Network
is then tested over transformed images obtained from the
CED. Thus, the proposed deep learning based vein recogni-
tion framework is highly generalized for operating on either

of palm vein (CASIA or PolyU or IITI) databases as shown
in Figure 3 and Figure 2.

2. Proposed Palm Vein Authentication Siamese
N/W

The proposed biometric authentication approach is based
on Siamese convolution neural network framework with a
triplet loss function, which enables an idea to learn the dis-
tance metric between positive, anchor, and negative embed-
dings. To do this, first, we enforce an encoder-decoder net-
work to learn domain-specific features, followed by genera-
tion of palm vein feature set by stacking inception layers.
The complete architecture of proposed system including
feature extraction and matching n/w are shown in Figure1
and Figure 2(a). The major importance of our prosed model
lies in the end to end learning of the whole system. We
use augmentation to contribute the training, select a smaller
batch size to converge faster and involve dropouts to prevent
from the over-fitting.

2.1. Palm Vein ROI Extraction

In order to extract the palm vein ROI’s, the hand image
is given as input to the region based convolution neural net-
work (CNN) that use different bounding boxes as ground
truth to classify and localize the ROI’s [10]. Specifically, an



Figure 3: Encoder-Decoder (CED) Architecture. Red blocks depicts 3× 3 convolutions.

input image is first passed through region proposal network
(RPN) that provides various probabilistic bounding boxes
over which classification and regression heads are applied.
Finally, the R-CNN is trained from scratch rather than con-
sidering pre-trained weights in order to make out the trained
model as problem-specific as possible. The performance of
ROI n/w [10], for segmenting palm vein images in terms of
accuracy, at an overlap IOU threshold of 0.5 is as follows:

—CASIA [1]: 98.52%
—IITI [4]: 99.63%

2.2. Domain specific transformation learning using
Encoder-Decoder Network

In this work, the encoder-decoder network is inspired by
U-Net model which has been widely used for segmenta-
tion tasks. We have modified this model for learning image
transformations, giving us output similar to what it has been
trained on, as shown in Figure 2(b).

Network Architecture : The architecture of our deep
framework consists of 3× 3 convolution layers with ReLU
activation. Consequently, a 2×2 max pooling operation has
been used for down-sampling the feature map. Each step in
the up-sampling path consists of 2 × 2 up-sampling opera-
tion followed by a concatenation with the correspondingly
feature map from the contracting path (merge connection).
Over the concatenated feature map we apply 3×3 convolu-
tions with ReLU activation. The merge connections circum-
vent the vanishing gradient problem. Figure 3 shows the
network architecture of image transformation model where
each red block depicts 3× 3 convolution layer.

Network Training : For training the encoder-decoder
networks, we first constructed ground truth by performing
a transformation operation namely TCM on 600 palm vein
samples and thereafter we applied another transformation
IRT over the TCM images. The detailed description of the
network training is as follows:

An encoder-decoder network is trained to learn the TCM
operation on the original palm vein images. For that, the
original image is shown to the network and asked to gen-

erate the corresponding TCM image. A second encoder-
decoder is trained which takes TCM image as input and has
to learn IRT operation on TCM images. Finally, we merge
the two networks (end to end) to create one deep stacked
encoder-decoder network whose ultimate task is to render
the IRT image from the original image as shown in Figure
4. The combined network is then fine-tuned for generating
IRT from original images. The generated TCM and IRT
images are concatenated with the original image to form a
multi-channel feature which is used for matching.

Usefulness of CNN Learned Features : The visual fea-
ture based appearance for palm vein is depicted in Figure
2(b), which clearly highlights the curvilinear structures of
vein patterns. There are many such algorithms like Ga-
bor filter [16], CS-LBP [4] already used in vein recogni-
tion literature which are robust to illumination and suitable
for matching. But these algorithms are usually very slow.
Hence to speed up the process, we train an encoder-decoder
network which learns such feature transformations. More-
over, once the complete PVSNet is trained in end-to-end
fashion, the weights of these networks are updated accord-
ing to the final objective function. This allows the encoder-
decoder networks to generate images that are not exact al-
gorithmic enhancements but images that are even more ben-
eficial for matching than the initial feature transformation.
Hence, an encoder-decoder network trained for extracting
such features is highly capable of enhancing the most dis-
criminative image features.

2.3. Proposed Siamese Matching Network architec-
ture: Comparison with FaceNet

Unlike the previous triplet loss functions like SDH
[14] and FaceNet[12], a triplet Siamese network with an
adaptive-margin based hard-negative mining scheme has
been introduced. These contribute maximally to train the
network and results in faster convergence. In order to match
the multi-channel features, we train a Siamese network us-
ing a triplet loss function. The network consists of a Fea-
ture Extractor (FE) which gives us the 128 dimensional fea-



Figure 4: Combined Encoder-Decoder Architecture for Palm Vein Biometrics

ture embedding for an image. These feature embeddings
are normalized and projected over a zero-centred unit radius
hyper-sphere. Over these embeddings, we apply triplet loss
to train the FE. Post training, we match the samples using
L2 distance between the feature vectors obtained from the
FE. The network used in the arms of the Siamese Network
is a stack of inception layers. Most of the spatial informa-
tion present in the images of Palm is line based and is seen
in large chunks. Therefore, the initial layers of the feature-
extractor network have large rectangular filters, both in hor-
izontal and vertical orientations. The use of large filters al-
lows us to get very high-level spatial-information from the
images, and the rectangularity of these filters captures the
most discriminatory features from the images.

Embedding N/W: The goal of embedding n/w is to map
the encoded templates, which may initially have different
dimensions, to a joint latent space of common dimensional-
ity in which corresponding images of a given subject have
high similarity and dissimilar for all different subjects.

Triplet-loss Function: We train our network using
triplet loss as shown in Figure 2(a). The loss-function is de-
signed to counter the adverse effect of the scarcity of data.
The triplet loss function (D(a, p, hn)), based on the dis-
tances between anchor (a), positive (p) and hard-negative
(hn) embeddings has two properties - that it uses the hinge-
loss function to make sure that a high score for differ-
ent subjects and low score for the same subjects rewards
the network with zero-loss, and that it considers the hard-
negative images for the subjects to realize the similarity in
images from different subjects. The loss for the anchor-
image a and any other image i is given by:

Ji = L2
2(a, i) (1)

The triplet-loss function is defined below (where M is mar-
gin of hinge loss):

D(a, p, hn) =
1

2
max(0,M + Jp − Jhn) (2)

Hard-Negative Mining: The network needs to under-
stand that the images of two different subject may be simi-
lar to some extent and can cause problems while matching.

Therefore, we need to provide hard negative samples to net-
work while training. To compute them for each of the train-
ing batches, the network is given random negative pairs and
asked to predict the dissimilarity score. Out of these pairs,
only those are chosen whose score violates the margin. This
process is done in an online fashion before choosing each
batch.

Making batches: The data is fed to the network in
batches of size 90. Given a subject-pose combination, for
each of the batch size samples, we have 3 images: 1) The
anchor image is the one corresponding to the given subject-
pose combination. 2) The positive image is that of a dif-
ferent pose from the same subject. 3) The negative im-
age is one of the hard-negatives for the given subject-pose
combination. The number of positive samples has been in-
creased by using augmented images made using the Aug-
mentor Tool [2], to supplement the low number of positive
samples for a given subject.

Tuning the triplet-loss margin: The most impor-
tant hyper-parameter while training the combined model is
the margin by which the triplet-loss tries to separate the
negative-pair from the positive one. We dynamically in-
crease this margin from 0.2 to 0.5 as the training proceeds.

Feature Extractor (FE): For extracting the feature em-
beddings of palm vein, we use feature extractor as shown
in Figure 1 (a). The detail about the architectures of palm
CNN is given in Table 2. The CNN gives us a (7 ∗ 7 ∗ 512)
dimensional feature vector that is flattened.

Network Training: To avoid overfitting, we pretrain the
CNN of the siamese network as an autoencoder. The input
to encoder being the multi-channel feature image and output
is a feature map of size (7×7×512). The decoder has been
designed as a mirror of the CNN encoder, which will take
the feature map from the encoder as an input and output the
multi-channel feature image. This autoencoder is trained
over the gallery dataset to ensure that all the generative fea-
tures present in the images are learned. Once the autoen-
coder is trained, we discard the decoder, save the weights of
the encoder and use it as a pre-trained weights for the CNN
in the feature extractors. The detail about the architectures
of palm CNN is given in Table 2. We add a fully connected



Table 1: ROC based Performance Analysis over Vein Image Datasets

Description Genuine Matching Impostor Matching EER (%) CRR (%) DI
Intra Vein Matching (CASIA MS Database): Training and Testing on same Images

Siamese N/W 1800 358200 3.71 85.16 2.33
FaceNet 1800 358200 5.77 77.16 2.11

Intra Vein Matching (IITI Vein Database): Training and Testing on same Images
Siamese N/W 3330 1228770 0.93 97.47 2.66
FaceNet 3330 1228770 2.20 93.69 2.35

Intra Vein Matching (PolyU MS Database ): Training and Testing on PolyU Images
Siamese N/W 18000 8982000 0.66 98.78 2.35
FaceNet 18000 8982000 1.42 96.43 2.09

Inter Vein Matching: Training on IITI and Testing on CASIA Images
Siamese N/W 1800 358200 9.37 72.33 1.92
FaceNet 1800 358200 12.72 57 1.69

Inter Vein Matching: Training on CASIA and Testing on IITI Images
Siamese N/W 3330 1228770 5.08 92.88 2.10
FaceNet 3330 1228770 6.30 89 2.03

Inter Vein Matching: Training on PolyU and Testing on CASIA Images
Siamese N/W 1800 358200 11.44 86.16 1.79
FaceNet 1800 358200 13.84 82.66 1.73

Inter Vein Matching: Training on PolyU and Testing on IITI Images
Siamese N/W 3330 1228770 7.36 89.90 1.92
FaceNet 3330 1228770 9.43 85.58 1.83

layer to get the final 128 dimensional feature embedding.
Later we fine tune the FE for the discrimination task using
the triplet loss (as discussed above). For initial training, the
layers from the CNN in the FE are kept frozen and only the
fully-connected layer are trained. This is done to prevent
the heavy-loss from untrained fully-connected layer from
distorting the generative feature-maps learn by the CNN.
Once the loss for the FC layers gets stabilized, all the layers
of the network are trained. Finally, we combine both the
encoder-decoder pipeline and the Siamese Network to train
this whole network in an end-to-end fashion.

3. Experimental Analysis

In distinguishing experiments, the performance of the
proposed method has been evaluated in terms of three per-
formance parameters viz. EER (Equal Error Rate), CRR
(Correct Recognition Rate) and DI (Decidability Index).
We conduct experiments more in-depth on publicly avail-
able databases (CASIA multispectral palm print [1], IIT
Indore Hand Vein (available on request), and PolyU mul-
tispectral (NIR) palm print [3]) to validate the proposed
framework. For each test, the following two testing pro-
tocols are defined. (a) Intra Vein Testing: PVSNet has
been trained and tested on same vein dataset. For exam-
ple, CASIA on CAISA, IITI on IITI, and PolyU on PolyU.
(b) Inter Vein Testing: PVSNet has been trained over any

Table 2: Siamese CNN Architecture

Palm Vein CNN
Input Size 150× 150

2D Conv (9,3) 2D Conv (3,9)
Maxpool

2D Conv (7,3) 2D Conv (3,7)
Maxpool

2D Conv (5,3) 2D Conv (3,5)
Maxpool

2D Conv (3,3)
Maxpool

2D Conv (3,3)
2D Conv (3,3)

Output Size 7× 7× 512

one of the three vein datasets while tested on the data from
other two datasets. For example, CASIA on IITI, CASIA
on PolyU, IITI on CASIA, and IITI on PolyU. In addi-
tion, another state-of-art deep network architecture named
as FaceNet has been tested using same testing protocols,
tweaked and fine-tuned as required.

Database Specifications : The proposed system has
been tested on publicly available CASIA multispectral palm
print database [1], IIT Indore Hand Vein database, and
PolyU multispectral (NIR) palmprint database. The left and



Table 3: Comparative Performance Analysis

Algorithms Database Used Palm Vein (%)
EER CRR

Handcrafted Feature based State-of-Art Algorithms
WLD [8] CASIA MS 6.08 97.50
MPC [5] CASIA MS 1.83 NA
NMRT [17] CASIA MS 0.51 99.17
Deep-Matching [4] CASIA MS 2.61 NA
[16] PolyU MS 0.26 (NIR) NA

CNN Feature based State-of-Art Algorithms
SDH [14] PolyU Finger Vein 9.77 NA
Triplet Loss [14] PolyU Finger Vein 13.16 NA
Deep-Vein [11] PolyU Finger Vein 3.02 NA
FaceNet [12] CASIA MS 5.77 77.16
FaceNet [12] PolyU MS 1.42 96.43

Proposed CNN based State-of-Art PVSNet
PVSNet CASIA MS 3.71 85.16
PVSNet IITI Vein 0.93 97.47
PVSNet PolyU MS 0.66 98.78

right-hand samples from a subject are considered belonging
to separate individuals, resulted in 200 (CASIA), 370 (IIT
Indore) and 500 (PolyU) subjects respectively. For each
subject, the first half samples are considered as the gallery
and the remaining as the probe.

Experiment-1: In the first test, the comparative poten-
tial of proposed PVSNet, as well as FaceNet, has been eval-
uated by using intra vein matching scheme. The corre-
sponding ROC characteristics w.r.t CASIA, IITI and PolyU
datasets are shown in Figure 6 (a,b). All the details about
genuine/ impostor matchings as well as EER, CRR and DI
corresponding to the best performance for each dataset are
highlighted in Table 1. On account of results, the follow-
ing direct observations can be made. (1) The palm vein
samples of PolyU and IITI datasets obtains promising ver-
ification results than CASIA datasets, using either of CNN
model. Since CASIA database allows a high degree of vari-
ation of hand postures than PolyU and IITI samples. (2) In
overall, the proposed Siamese N/W outperforms FaceNet
in terms of achieving lower EER values for each one of
palm-vein datasets. Specifically, the Siamese N/w achieves
the best individual performance of 0.66 % EER, and 0.93%
EER on PolyU and IITI images respectively. Since Siamese
networks trained with the feature embeddings produced by
the autoencoder achieve better matching performance com-
pared to the triplet-based loss function, but the dependence
of the Siamese network on pairwise inputs is a crucial issue
during inference in terms of complexity.

Experiment-2: In this test, testing strategy harder than
previously used intra vein matching is devised to make a
more fair comparison in between the PVSNet and FaceNet

models. Using this testing, we run 8 combinations of train-
ing and testing sets, where we use one dataset for training
and another for testing. In other words, matching is per-
formed similarly to zero shot learning that involves gallery
and probe images from test dataset only. In this test, one can
clearly observe that as we shift from intra to intervein test-
ing scheme, the performance drops abruptly in all studied
cases. The complete detail about performance parameters
is given in Table 1 and the respective ROC graphs are de-
picted in Figure 6 (a,b). The reason is that the model is
trained and tested on entirely different vein datasets and the
images may be dissimilar in size or shape. For instance,
training on CASIA and testing on IITI or testing on IITI
and training on CASIA shows better results than the same
tests with PolyU images because PolyU vein images are of
size 128×128, while CASIA and IITI are both of same size
(150×150). Also, the physical configuration of PolyU vein
images is different from CASIA and IITI images. Thus, we
have not performed inter vein testing on PolyU images.

Experiment-3: To illustrate the effectiveness of the pro-
posed PVSNet model, a performance comparison with three
handcrafted and four CNN based methods is given in Table
3. The various existing approaches based on deep networks
incorporate a CNN based features and trained using the
triplet-based loss function which is not perfect of achieving
a smaller intra-class variation and a larger inter-class varia-
tion with significant performance on the testing set. In con-
trast to this, the proposed method straightly trains its output
to be a compact 128-D embedding using a triplet loss func-
tion. A lower value of EER i.e., 0.66% has been achieved
on PolyU palm vein, which is superior to the EER values



Figure 5: ROC Performance Analysis: (a) Testing with CASIA; (b) Testing with IITI

Figure 6: ROC based Performance Analysis: (a) Testing with PolyU; (b) Genuine Vs Impostor

obtained from any of the CNN based methods [11, 7, 12].
In addition, an EER of 3.71% is achieved on the most chal-
lenging CASIA dataset which is extremely better than the
similar works done in. This justifies the strength of network
learned feature representation and Siamese based triplet loss
network. One can observe that we have achieved state of the
art results in almost all the testing strategies adopted in this
paper.

4. Conclusion

In this work, we have proposed a novel end-to-end deep
network design by combining domain-specific knowledge
and deep learning representation. The various challeng-
ing issues related to vein biometrics have been addressed
suitably. The fixed size ROI images have been given to an
end-to-end CED augmented with Siamese network trained

using triplet loss for vein recognition. As a part of future
work, we will try to incorporate CNN based ROI segmenta-
tion and ROI enhancement network to further improve the
recognition performance of the proposed system.
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