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Abstract

The new tools available for gene expression studies are essentially the bio-array methods using a large variety of physica
detectors (isotopes, fluorescent markers, ultrasounds...). Here we present first rapidly an image-processing method independe
of the detector type, dealing with the noise and with the peaks overlapping, the peaks revealing the detector activity (isotopic
in the presented example), correlated with the gene expression. After this primary step of bio-array image processing, we car
extract information about causal influence (activation or inhibition) a gene can exert on other genes, leading to clusters of
genes co-expression in which we extract an interaction mistrand an associated interaction graph G explaining the genetic
regulatory dynamics correlated to the studied tissue function. We give two examples of such interaction matrices and graphs (the
flowering genetic regulatory network of Arabidopsis thaliana and the lytic/lysogenic operon of the phage Mu) and after some
theoretical rigorous results recently obtained concerning the asymptotic states generated by the genetic networks having a give
interaction matrix and reciprocally concerning the minimal (in the sense of having a minimal number of non-zero coefficients)
matrices having given stationary stable stafescite thisarticle: J. Demongeot et al., C. R. Biologies 326 (2003).

O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé

Traitement d’images bio-array et modélisation de réseaux génétiques. Cet article décrit d’'abord rapidement quels sont
les nouveaux outils utilisés pour étudier I'expression des génes, essentiellement les bio-arrays, qui mettent en ceuvre un gran
nombre de détecteurs physiques (isotopes, marqueurs fluorescents, ultra-sons...). Nous présentons une méthode de traitem
d’'images indépendante du type de détecteur, traitant le probléeme du bruit et des superpositions de pics, ces derniers révélal
I'activité du détecteur (isotopique dans le cas choisi ici) corrélée avec I'expression des génes correspondants. Apres ce premie
stade de traitement d'images bio-array, on peut extraire I'information relative a l'influence (activation ou inhibition) qu’un
géne peut exercer sur les autres genes, conduisant ainsi a I'apparition de groupes de co-expression, d’'ou I'on peut extrair
une matrice d'interactioM et un graphe d’interaction associé G, susceptibles d’expliquer la dynamique de la régulation
génétique corrélée avec la fonction tissulaire associée. Nous donnons quelques exemples de telles matrices et de tels grapt
d’interaction (en particulier dans le cas du réseau de régulation génétique de la florAistidiipsis thalianat dans celui de
I'opéron lytique/lysogénique du phage Mu), et ensuite quelques résultats théoriques rigoureux réecemment obtenus sur les éta
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asymptotiques générés par des réseaux génétiques ayant une matrice d'interaction donnée. Réciproquement, nous décrirons
matrices minimales (au sens du nombre de leurs coefficients non nuls) ayant des états stationnaires stablesurlanteés.
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1. Introduction “ ey

The total MRNAs of genes to test are extracted from

the studied tissue (in the present case a glioblastome Cine sz
tissue). DNAs are synthesized by reverse transcription |~ sxss 327 ii s
from these mRNAs including bases labelled with the R N R YT
isotope B3, Resulting DNAs are then tested against el TInTITIDCS
identified complementary DNAs (cDNA targets), pre- PO A SR

.
-

viously amplified by PCR and fixed on a nylon gel.
The hybridisation results are revealed in a phospho-
imager and yield a digital image coming from the ra-
dioactive hybridisation plate, called the bio-array im- :
age or shortly the bio-image. cDNA hybridised with a
P33DNA means that the complementary sequence of
the P3DNA is present in the related mRNA, proving
that the corresponding gene is expressed in the studied :
tissue. S A
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Fig. 1. Raw data (left), watershed segmenting (top right), and

2 Peak segmentation contouring (bottom right).

The first encountered problem is the fact that the able line, called in the following the characteristic line,
bio-images are extremely noisy and that we have to its equation being:
low-pass them in order to suppress the high-frequency
noise. The result of this pre-treatment (Fig. 1) is H(x,y) = 3%g/0x?3%g/dy? — (3%g/0xdy)?>=0
a better separation of the isotopic activity peaks,
allowing a watershed separation and contouring [1,2],
but it often leads to over-estimating the peak activity.
Then we will apply a more accurate segmen-
tation and contouring method called the potential-
Hamiltonian or ‘Gaussian stamping’ method: let us '~ , ) - _
remark that the peaks are about Gaussian, with a rel—l'”,"t cycle. Let H'(x, y) be the functllon defined by:
atively weak kurtosis and skewness allowing in par- H (*,¥) = [H(x, y)|. Vanishing of #’(x, y) occurs
ticular the rgs_pect of the conserv_ation law'f2 of - on the characte/rlstlc Ilqe (see Flg_. 2 for the wsughza-
the peak activity are concentrated into the set of points 10N 0f ¢ and H') and if we consider the following
(x, y) where the Gaussian curvatutx, y) vanishes, ~ crude system:
i.e. inside the maximum gradient line of the peak. By ,
exploiting this property, it is possible to neglect the ¥/ = —adH'/ox+BIH'/dy
part of the peak outside the projection of this remark- dy/dt=—adH’'/dy — BOH'/dx

whereg(x, y) is the grey function at the pixék, y).

We are thus led to consider the new grey func-
tion H(x,y) instead of the functiorz(x, y) and its
level line H(x, y) = 0. We display after a plane dif-
ferential system of which the characteristic line is a
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g Gaussian peak G

Fig. 3. g (top) andH’ (bottom) for close Gaussian peaks.

Fig. 2. Representation ¢f, G, H' (with indication of potentialp
and Hamiltoniam: parts) for a Gaussian peak and the result of the Fig. 4. Treated bio-image (left), succeeding limit cycle (middle) and
Hamiltonian segmentation (below left). false contour (right).

wherea andpg are real parameters, then the first part x g6, j+2) —2gG, j+1) + g0, j)]

of this differential system is of steepest descent poten- . . .

i i : - +1j+1D)—gGj+1

tial nature and along this flow, the orbits converge to [s¢ J+D st ) )

the set of zeros off’(x, y), on which the second part — g +1 ) +gG. )]

of convective Hamiltonian type becomes preponder- We have seen an important property of the character-

ant [1]. Parameters andp are used to tune the speed gic jine i e. in the case of a Gaussian peak, it delimits

of convergence to the limit cycle. To cope with random . |yme equal to 2 of the total volume of the peak.

noise and numeric instabilities, we modify slightly the This property remains about exact in case of kurtosis

system into: and skewness of the peak. Hence by multiplying by
_ p , activity and this value is better than that obtained by a

dy/dt =—adH /ay[H(x’ N/ G, y)] —BIH/3x, watershed method due to over-segmentation (Fig. 1).

whereG(x, y) = ||gractg) ||2 This approach is interesting because the lower part of

the peak is often noisy. The method seems particu-
The added ternH (x, y)/G(x, y) speeds up the de- -
scent to the vanishing aff (x, y) and forces the sta- larly efficient when the peaks are well separated. If

bility. The usual discretization of Runge—Kutta yields they ?re CIOSS (F::g_. 32’ tr|1erf1 V\;E neded t? tur:entthe ?a-
ultimately the algorithm, which is quite easy to imple- rametersy andg (Fig. 4). In further developments o

men. On each e ) - boundary efecs beng 12 "e10% e Lok o aynaica caloiton of
neglected —, the functioH (i, j) reads: P ) Y,

dardize the estimated activity in terms of a bio-image
H@, j)=[gG+2 j)—2gG+1j)+gG, j)] with small squares symbolizing in grey levels the de-
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Fig. 5. Standardized bio-image (the treated sub-image of Fig. 4is | ®° p26 p2a p2z pia piz ai1 ais 22 24 a2 a28
inside the black rectangle). [@transiocations @male crossing over Ogenes |

0.20 -
o.18
\

gree of hybridisation of the cDNAs (Fig. 5). From such | o1e

0.14

bio-images acquired at different times of the cell cycle | o2

0.10

in cells from the same tissue, we can study the interac- | 2
tions between genes by estimating an interaction ma- | 2%

. 0.00
t”X- p26 p24 p22 pl4 p12 ql1 g13 Qg22 q24 q26 q28

Fig. 6. Distributions of domestic (bottom) and all genes (middle
3. Interaction matrix M right), crossing-over (male red and female blue top) and transloca-
tions (middle left) along chromosome 3.

A major problem a geneticist has presently to face
since the introduction of the bio-array imaging is the

estimation of the intergenic interaction mathk that interaction matrixM. So we partly solve the second
rules the observed genes expression in operons andoroblem too.
genetic regulatory networks [3—7]. This interaction In general, it is very difficult to have exhaustively

matrix is similar to the synaptic weight matrix, which the interaction matrices: in the genetic literature and
rules the relationships between neurons in a neural also by observing co-expressions through bio-arrays
network. Hence, it is in general of a great biological imaging, it is possible to qualitatively or even quan-
interest and relevance to determine matrices having titatively estimate the inhibitory (in case of repres-
characteristics like:i§ a minimal number of non-zero  sion by a protein obtained from the expression of
coefficients for a given set of stationary behaviours a gene) or activatory (in case of induction or pro-
(fixed points or cycles),ii) a minimal number of motion) coefficients of the interaction matrix. If we
positive or negative circuits, controlling the number have no information, we can randomly choose the
of attractors and their stability (cf. [8-21] for both matrix by respecting certain basic rules, e.g., by re-
the discrete and the continuous case). In this paper,specting certain proportions of activatory or inhibitory
we give some general results about the relationshipsinteractions. We can, for example, obtain the loca-
between the positive and negative circuits in the graph tion density of expressed ubiquitory genes (calculated
of the interaction matrixM and the existence of from http://www.citi2.frfGENATLAS) and then ran-
fixed points. This permits us to characterize minimal domly simulate the interaction matrix and the ini-
matrices, given dynamical behaviours, and therefore tial conditions of the gene expression, by sampling
partly solve the first problem. Finally, we constructed them 100000 times, the interaction matrices respect-
a bound for the number of fixed points in terms of ing the constraint to have 10% (resp. 10%) of nega-
the number of positive circuits in the graph of the tive (resp. positive) interactions, like in tgabidop-


http://www.citi2.fr/GENATLAS/

J. Demongeot et al. / C. R. Biologies 326 (2003) 487-500 491

Table 1
Second column shows the distribution signatures and third the number of differenc@sH{( being not taken different from=) between a
given distribution and the crossing-over one as reference

Ubiquitory genes distriouton - - - + + = — + — = = 4+ + = — 4+ 4+ + — + + 3/21
All genes distribution + = - 4+ + - -+ - + =+ - 4+ - =+ + - - + 92
Crossing-over distributon - = = = = 4+ + - - —- = 4+ + - — = = = + + + 0/21
Translocation distribution = - + - == 4+ - 4+ - = =+ - + - = = + - + /21

sis thalianagenome [3]. Fig. 6 below gives the dis- theb;s are threshold values. In the case of small regu-
tribution of the co-expression of the ubiquitory genes latory genetic systems (the smallest being called oper-
calculated from the expected stationary behaviour cor- ons), the knowledge of such a matfix permits to
responding to a random choice of the interaction ma- make explicit all possible stationary behaviours of the
trix and of the initial conditions: we have systemat- organisms having the corresponding genome: for ex-
ically calculated attractors (fixed points or limit cy- ample, in the genetic regulatory network that rules the
cles) corresponding to an initial condition and an in-  Arabidopsis thalianalower morphogenesis (Fig. 7),
teraction matrix, and then we have calculated the fre- the interaction matrix is @11, 11)-matrix, with only
quency of observing the expression of each ubiqui- 22 non-zero coefficients. This matrix presents a cer-
tory gene in these attractors. In the absence of com-ain number of positive or negative circuits and only
plementary information about the localization of the gy observed attractors [3].

inhibitory or activatory interactions between ubiqui- For each operon, we can define an interaction
tory genes, the obtained co-expression distribution is matix M, which just expresses that if its coefficient
just a reflect of the spatial distribution of these ubiqui- m;; is positive (resp. negative), the geneis a

tory (domestic or housekeeping) genes along the hu- ;.o oter or activator (resp. repressor or inhibitor)

man chromosome 3 showmg that_ it is rela_ted to the of the genei. If m;; is null, then the gene Ghas

lo pathological ranslocations) i buons, i par. "0 IMUeNce on the expression of the gene The

entﬁlood b?aing proved by the analogy bet\;veen Ft)heir intergction graph can be built from the interaction
matrix M by drawing an edge- (resp.—) between

ignatures—i.e. their ion of monotony inter- . . ;
signatures—I.e. their succession of monotony Inte the vertices representing the geneandi, if m;; > 0

vals of increas or decreasé—)—as shown in Ta-
ble 1 &) &) (resp.< 0). In order to calculate the:;;s, we can

By comparing the distribution signatures given in either determine the-directional correlationg;;(s)

Table 1 above, it is easy to prove that we must reject '?etW‘?e” the state vect@r;(r — s)kec, 1>5 Of gene
the hypothesis that ubiquitory genes and translocation / &t imér —s and the state vectdr; ()}iec, r>s of
distributions are different from the crossing-over dis- 9€N€: at timest, 7 varying during the cell cycle C, or
tribution (p < 0.001), but we cannot reject the hypoth-  'dentify the system with a Boolean neural network.
esis of a difference between all genes and the crossing- e define the connectivity (M) of the interaction
over distribution. matrixM by the ratio between the numbetof edges
The general coefficient;; of the interaction ma- of the interaction graph ard of _vertices: in general,
trix M is equal to+1 if the gene G activates the for known operons and genetic regulatory networks
gene G, equal to—1 if the gene G inhibits the gene  (lactose operon [5,6], Cro operon of the phage
G; and equal to 0 if G and G have no interac-  lysogenic/lytic operon [4,7] of the phage infecting
tion, G being equal to+1 (resp.—1), if it is (resp. E. coli, gastrulation regulatory network..X (M) is

not) expressed. Then the change of stateof the between 1.5 and 3. The observed induction proportion
gene G betweery andr + 1 obeys a threshold rule:  (number of positive edges divided lay) is between
xi(t + 1) = HQ y—q,mixxk(t) — b;) or x(t +1) = 1/3 and ¥2. If m;;s are unknown, we can take them

H(Mx(t) — b), where H is the sign-step function randomly by respecting connectivity and induction
(Hy)=1,if y>0andH(y) = —1, if y < 0) and proportion.
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Fig. 7. Interaction graph of the flowering genetic regulatory networRrabidopsis thaliangright) and an attractor of its Boolean dynamics
(left).

4. Genetic networksdynamics — in 1993, Kauffman [22] conjectured that the mean
number of attractors for a Boolean genetic net-
work with n genes and with connectivity 2, was
equal to,/n. This conjecture is supported by real
observations: we have about 30000 genes in the
human genome and about 200 different tissues,
which can be considered as different attractors
of the same dynamics. Férabidopsis thaliana
K(M) =22/11=2 and there is 4= /11 differ-

ent tissues (sepals, petals, stamens, carpels) [3]
and for Cro operon [18] of phagg, K(M) =
14/5 = 2.8 and there is 2 ,/5 observed (lytic
and lysogenic) attractors.

If we consider the interaction graph of the flowering
genetic regulatory network ofrabidopsis thaliana
(Fig. 7) [3], then we can easily define from it a Boolean
dynamics with threshold O: the genehas the state
1 if it is expressed and-1 if not. The change of
state of geneé between the times andzs + 1 obeys
a majority rule, i.e. we calculate the numbers of its
neighboursin state 1 with positive interaction and with
negative interaction: if these two numbers are equal,
then the new state aof is 1; if the activatory (resp.
inhibitory) neighbours dominate, then the new state
of i is 1. (resp.—l). When the time is increasing, Recently [8-15], these conjectures have been par-
the configuration of gene states reaches a stable set of.

. . . . ) : tially proved.
configuration (either a fixed configuration or a cycle
of configurations), called an attractor of the genetic
network dynamics. In Fig. 7 (left), an example of such Proposition 1. If all loops of the interaction graph are
an attractor is given, with final states (in black boxes) positive, then there exists a state vectar
different from the initial conditions. = (x1,...,x,) in {=1,1}", such thatx and —x

We will present now first some qualitative results = (—x1, ..., —x,) are fixed configurations of the net-
from the human genome observation, and after some work dynamics.
theoretical corresponding statements recently proved:

Proposition 2. If all loops of the interaction graph are

— in 1949, Delbriick [17] conjectured that the pres- negative, then there is no fixed configuration.

ence of positive loops (i.e. paths from a gerte

itself having an even number of inhibitions [11])

in the interaction graph was a necessary condi- Proposition 3. Let a network having: genes and:
tion for the cell differentiation; this conjecture has interactions, then a necessary and sufficient condition
been more precisely written in a good mathemati- Of existence of a fixed configuratiaris the existence
cal context by Thomas in 1980 [16]; of a positive loop and-x is also fixed.
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Proposition 4. Given a state vectok, the set of
minimal matricesM havingx as fixed configuration
is given by the following conditions

(1) m;; = a;j x; xj, whereg;; > 0 and, for alli, there
existsj (i) such thatz;; ;) > 0;

(2) —aij4y < bi < ajji), where g;;s and b;s are
weights and thresholds of the genetic netwd#q.

Proposition 5. If m is the total number of positive
loopsC, then the number of fixed configurations is less
than or equal ta2™, and this upper bound is reached,
if and only if for any positive loofZ, there is no edge
(x,y)[x¢C, yeC.

Proposition 6. If the genetic network hasgenes and
2n interactions, then the expectation of the number
of its fixed configurations ig/n, if n is sufficiently
large [15].

Proposition 7. If the interaction graphG is a con-
nected digraph without loops havinggenes and let
suppose that, for any, »; > 0 and all m;;s are pos-
itive and verify either(Zj m;i; > b; and, for anyk,
Z#k mi; < b;) = AND rule, or (for eachj, m;; >

b;) = ORrule, then the number of fixed configurations
is 2"=D/2 for n odd, and2"~2/2 + 1 for n even[14].

Numerous applications of the results above are pos-
sible in various regulatory systems [23-40], but we
will focus here in the following on a very simple
operon governing the choice between the lytic and
lysogenic stationary states fdtscherichia coliin-
fected by the bacteriophage Mu.

5. An example of operon: thelytic/lysogenic
operon of the bacteriophageMu

Understanding the behaviour of the tempered bac-

teriophage Mu, considered as a transposon, consti-

tutes a real progress in the knowledge of transposition
mechanisms [41].
A Boolean model of the interactions between the

expression products of the Mu genome shows the ne-

cessity for the removal of the auto-inhibition of the
protein Ner (negative loop), which allows the consti-
tutive expression of the phage promoter Pe (positive

493

loop) to demonstrate a bi-stability [11,42]. The pres-
ence of the prophage state instability is necessary for
the induction of prophages. A review &fscherichia
coli factors influencing the Mu behaviour allowed us
to propose the Integration Host Factor (IHF) and the
Inversion Stimulating Factor (ISF) as being respon-
sible for the removal of auto-inhibition and for the
prophagic state instability. The modelling of their ef-
fects by a differential system clearly shows the same
Iytic/lysogenic proportions than those experimentally
obtained during the exponential bacterial growth phase
and the stationary bacterial growth phase.

These encouraging results demonstrate the neces-
sity of quantitative measures for lytic/lysogenic pro-
portions and intra-cellular concentrations of different
Escherichia colfactors during the entire length of the
growth cycle, in order to better understand the induc-
tion context of the bacteriophage Mu.

The bacteriophage Mu has been discovered in 1963
by L. Taylor [43]. During the infection step, Mu in-
corporates its DNA and proteins at random locations
in the host bacterial chromosome [44]. That induces
mutations and new auxotrophies and Mu belongs to
the large family of transposable elements [45]. There
is two developmental cycles for Mu: after integration
in the bacterial chromosome, the Mu DNA is multi-
plied by a series of replicative transpositions, giving
between 50 and 100 new viruses after lysis of the bac-
terial host (lytic cycle). A weak proportion of infected
bacteria becomes lysogenic, the Mu DNA remaining
inactive (lysogenic cycle). The induction rate repre-
sents the proportion of such lysogenic bacteria enter-
ing in the lytic cycle.

Mu infects enterobacteria and in particul&:
coli [46] and the integration of its genome into the
chromosome of these bacteria involves the phagic
transposase pA and its activator pB [47] (cf. Fig. 8).
In general, this integrated DNA is amplified through
a series of replicative transpositions [48] (involving
the transposase pA and its activator pB), then the late
phagic functions are synthesized, leading to assem-
bling numerous viral particles dispatched in the extra-
cellular medium after the lysis of the host cell. Among
a population of infected bacteria, a small proportion
will give birth to lysogenic cells, in which the phagic
DNA remains passive; this DNA can be replicated dur-
ing the further mitoses of the lysogenic cell or can en-
ter in a lytic cycle. After integration, the choice be-
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Fig. 8. Simplified scheme for the viral DNA of Mu; (A) shows
different genes in transcriptional units and the actions of their
expression products on the promoters’ activity. The fixation sites
of the different phagic (e.g., Ner on)por bacterial (e.g., IHF on
0O1) proteic factors are represented in (B).

tween the two possible developmental cycles (lytic or
lysogenic) is regulated at the levels of transcription
and replicative transposition of the Mu genome.

— Transcriptional regulationThe viral DNA has a
size of 37 kb [49] and possesses two promoters
Pe and Pc constitutively expressed [50] (Fig. 8A).
The early transcript from Pe codes for the trans-
posase pA, for its activator pB and for a protein
Mor activating (via the promoter P and the protein
C [51,52]) the cascade of the late functions of the
Iytic cycle. The transcript coming from Pc codes
for the repressor c preferentially fixed on the op-
erators O1 and O2 (Fig. 8B) for repressing Pe and
stabilizing the Mu DNA in its inactive form (the
prophage DNA). At high concentration, c is also
fixed on O3, repressing Pc and hence regulating
its own synthesis [53]. The Ner protein is fixed
between Pe and Pc and inhibits the transcription
from these two promoters [47,54].

Transpositional regulationDuring the transposi-
tion, the transposase pA transiently fix the ex-
tremities of the Mu DNA, attL and attR, and the
operators O1 and O2 in stabilizing a tetrameric
structure, which leads the Mu DNA to a specific

J. Demongeot et al. / C. R. Biologies 326 (2003) 487-500

Pe/Ner/pA/p
B /Kill/Mor

Fig. 9. Simplified scheme of the bacteriophage Mu operon (the blue
arrow symbolizes the presence of a positive loop).

posase pA being physically and functionally un-
stable in vivo [57], the viral genome amplification
implies a non-transient expression of the promoter
Pe.

5.1. Discrete logical (Boolean) model

Experiments about the phage Mu are done during
the exponential growth phase of the bacteria for in-
creasing the homogeneity of the observed bacterial
states. The lysogenic frequency is highly depending
on the used protocol (1% to 50%). We will base our
model on lysogenic induction rates observed in expo-
nential phase (0.001%) and in stationary phase (about
100%) (cts 62, temperature 3G). For interpreting
these experimental data, we used first Thomas’ logi-
cal approach [16,18,20,21], in whichrepresents the
repressor ¢ and the entitydenotes the group of pro-
teins Pe, Ner, pA, pB, Kill and Mor; their interactions
can be designed as in Fig. 9.

Variablesx and y take values 1 (expression/pre-
sence in the cell) or 0 (non-expression/absence from
the cell). With this notation, the statg,, x = 1 and
y = 0 corresponds to the lysogenic state and the state
E,, x =0 andy =1 to the lytic cycle. Let us notice
that it is not necessary to explicitly represent the auto-
inhibition of the repressor ¢, because c inhibits Pe
and auto-inhibits itself at high concentrations, hence
maintaining its concentration between two thresholds
61 andfs:

0, 0,

)

configuration, the transposome. The repressor ¢ Concentration x of the repressor ¢

binds also the extremities of the Mu DNA with
a weak affinity [55], entering in competition with
pA and then impeaching it to bind the two oper-
ators and the two extremities [56]. Hence repres-
sor c inhibits the lytic cycle both at the transcrip-
tional and transpositional levels, and the trans-

Below 61 (e.g.,x = 0), the repressor ¢ has insufficient
concentration to be fixed to the operators O1 and O2,
hencex does not inhibity. Between#; and 62, x
inhibits y but is not sufficient for fixing O3; hence
there is no auto-inhibition of. Above,, x inhibits
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A: B: — IHF (Integration Host Factor). IHF is a histone
Cell states Genome  of | Inhibition which presents a high affinity for the operator part

Mu cancelling of the Mu DNA (Fig. 8B), increasing its curva-
E. 0" ()tJ 00" ture, hence facilitating the fixation of the repres-
E, EO 1~ EO 1 sor ¢ on the operators [58,59] and activating the
E, 10 } 10 } transcription from the promoter Pe passing over
E, 11~ 1 1- the retro-inhibition by Ner, if c is absent [60].

The absence of IHF impeaches any significative
production of phage Mu [61]. The cell concentra-
tion of IHF is inversely proportional to the mitosis

rate (from 12 000 mol/cell in exponential phase to

Fig. 10. Dynamical behaviour of Mu alone (A) and with a factor
cancelling auto-inhibition ofy (B). The stationary steady states
are represented in bold and superscripts are corresponding to state

changes.

y and inhibits itself until going to a level less thén

Because this negative loop causes a homeostasis, we

consider forx only the valuest = 0 andx =1, and
the self-inhibition is not explicit in the model.

Because the two promoters Pe and Pc are constitu-

tively expressedy takes the value 1 if it is not inhib-
ited byy: if y =0, thenx =1 andify = 1, thenx =0.
Reciprocally, ifx =0,y =1 andifx =1,y =0, lead-
ing to the following logic equations:

X:—|y

:—|x)(—|y

wherex and y represent the values of the two logic

variablesX andY.

We consider the four possible initial statég (x =
1,y=0),E, (x=0,y=1),E; (x =0,y =0) andE;
(x =1, y = 1), if two variables ‘enlightened’ tend to

52 000 mol/cell in stationary phase [61]).

HU (Histone U). It causes the same effects than
IHF on transcription and transposition [62], but
its concentration does not vary following the
bacterial growth rate [61].

ISF (Inversion Stimulating Factor). ISF helps c in
repressing the lytic cycle: it increases the tran-
scriptional repression and inhibits the transposi-
tion [63]; its absence multiplies by about 600
until 800 times the viral particles production in
vivo [64]. Cell concentration of ISF is maximal at
the start of the exponential growth phase (80 000
mol/cell) and decreases until a rate zero when the
growth diminishes [65,66].

8-proteins system. For its DNA replication Mu
depends also on host enzymes, from which eight
have been identified [67] and for the degradation
of the transposase pA and catabolism of ¢ on 2
proteases [41].

become ‘off’ (noted I) or conversely if two variables
‘off’ tend to become ‘on’ (noted 0), they are not
changing at the same time. For exampl&Q0 gives
10 or 01. The behaviour of this system (cf. Fig. 10A) IHF is the only bacterial factor activating the
has only a stable stationary state (s#%) (x = 1, transcription of Pe in absence of c. For (,) being
y = 0), which corresponds to the lysogenic state. But a stable stationary state (sss), the activation of Pe by
Mu is a bi-stable system and we have to put another IHF has to equilibrate the repression by Ner, leaving
information in the model to get a second sss. the constitutive expression of Pe to run. In stationary
For rendering stable the lytic statg, (x = 0, growth phase, the induction of prophages is total,
y = 1), we need an activation of cancelling its despite the presence of a measurable activity of c. The
self-inhibition proportionally to its concentration [11].  factor ISF helping the action of the repressor c, present
In stationary phase, the proportion of lysogenes is in exponential phase but absent in stationary phase, is
near 100%, despite the fact that c is still present. responsible for that behaviour. Let us now consider
Then we need two factors participating either to the a continuous differential model, where the variables
maintenance of the passive phage state, or to theare the four states previously consideréd (E,, E;
lytic cycle induction (both at the transcriptional and andE;), IHF and ISF being parameters whose value
transpositional levels). A review of such possible changes can favour the passage from a state where one
cellular factors leads to the following list. of these variables dominates to another state where it

5.2. Continuous differential model
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is another dominating. The differential system can be Ei(t)
written as: 10000 7
dE,/dr = —k3z E,/ISF+ (1/3+ I1SF/kp) E; 5 \
+(1/3— IHF/kq) E; Baooor Ey
dEy/dt = —ka Ey /\HF + (1/3 — ISF/ ko) E; :
60000

+ (1/3+IHF/ k1) E,

dE,/dt = —E; + E./3
dE./dt = k3 E,/ISF+ ka E,/IHF + E;/3— E, 40000
<_ Ez

We assume from experimental data this/ks
= ko/ky ~ 6, whereks and k1 are fixed in such 20000
a way thatE,(co0) = 10° and E(c0) = 1 (station-

ary phase condition). Then the non-zero steady state
with E.(c0) = 1 verifies: E;(c0) = 1/3, E,(00) ofl /7 ooz 004 008 0.08 0.1
= ISF4/9 — IHF/k1 + ISF/3k2)/ks, E,(c0)
= IHF(4/9 + IHF/ k1 — ISF/3k2)/ k4.

Ex

Fig. 11. Simulation of the behaviour of 100 000 Mu lysogenes when
bacteria are in stationary phase.

5.3. Results
We have simulated (Mapple Runge—Kutta 4 with Ei(t)
constant steps) the dynamical behaviour of 100000 4ggaq
phages Mu initially in lysogenic statet( (0) = 10°, P 4
and E,(0) = E,(0) = E;(0) = 0), in exponential Ex

growth phase (IHE= 12000 mol/cell, ISF= 80000 800004
mol/cell) and in stationary growth phase (IHF
52000 mol/cell, ISF= 1 mol/cell) with parameters
values equal td; = 100, k2 = 700, k3 = 1800,k4 = 60000+
300.

In stationary phase (Fig. 11), the lytic statg,)
is increasing and reaching a plateau of 100000 lytic
cells, which well corresponds to the experimental data
and give an estimation of the duration of the time unit
(0.004~ 10 days).

In exponential phase (Fig. 12) the lysogenic state
(E,) is practically constant with only a loss of 155 t
bacteria after 200 days. 0 002 004 006 008 01

To _estlmaFe the robustness of these dynamical Fig. 12. Simulation of the behaviour of 100 000 Mu lysogenes when
behaviours with respect to the values of fieandk, bacteria are in exponential phase.
parameters, we show that in exponential phaskas
no incidence andj can vary between 10 and 5000
(Fig. 13), without changing the agreement between
predicted and observed dynamical behaviours. instability (but the system is trajectorially Lyapunov-

The stability study in the neighbourhood of the stable) and, in stationary phase, among all other
stationary states is done by calculating the eigenvalueseigenvalues, two are complex, with negative real part,
of the Jacobian matrix of the differential system above: whereas one is real negative; in exponential phase, two
0 is always an eigenvalue that causes an asymptoticare real negative and one is real positive.

40000+

20000+
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Fig. 13. Evolution of the asymptotic values &% and E, in the
exponential phase with respect to thevalues.
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—sg (Zm,»j (1+x1-(t))(1—xj(’))>

J

r(Emit s
+sg<Zmij(1+xi(’))>>>

where sg(y) =1, if y >0, sg(y) =0, if y=0
andsg(y) = -1, if y <0, or, like in Section 5, a
differentiable system. We can also merge the Boolean
and the differentiable approach in a hybrid system [69,
70].

Another perspective exists for the interaction ma-
trices introduced above, i.e. the ability to calculate the
barycentre between two matrices by using classical
(spectral or L) distances between matrices, then to
build phylogenic trees among a set of species avoiding
the complex problems coming from the non-unicity

The Boolean model has shown the necessity to of L; (Hamming or Manhattan) barycentres met in

suppress the self-inhibition by Ner in order to get a
bi-stability. The continuous version explains in the

the sequence based phylogenic trees. The interaction-
based phylogenic trees could reflect more the genomic

lytic phase the reaching a plateau behaviour for the function than the genomic anatomy and hence could
01 state after 10 days and, in the lysogenic phase, theexplain more deeply the evolution trends, e.g., by dis-
long transient of the 10 state (1% of decrease after tinguishing the evolution of domestic genetic regu-

3 months). In order to get a more predictable model,
we need measures of the proportion lytic/lysogenic
bacteria on a wider interval of growth rates (the local
growth rate R(r) coming from a logistic or from

a Monod saturation model [68]). Then the system
would become non-linear with ISF and IHF being
proportionally respectively t&(t) and dr(¢)/dr.

6. Open problems

A frequent criticism made about the Boolean mod-
els is their unrealistic number of levels (two); it is pos-
sible to easily relax this constraint by considering ei-
ther a multi-threshold network (for which most of the
results of Section 4 are still available), or a non-linear
automaton, like the following:

xi(t+1)

= sup(—l, inf(l, x; (1)

latory networks (involved in rearrangements [12,13])
and that of high-level genetic regulatory networks
(corresponding for example to brain signalling or hor-
monal regulatory systems), the complexity of their in-
teraction matrices being probably of the same order of
magnitude than the complexity of the metabolic inter-
action matrices corresponding to their expressed pro-
teins (carriers, receptors or enzymes) [71,72].

A last important open problem concerns the rela-
tionship between the numbdt of fixed configura-
tions and the numbe¥ of interaction loops of the in-
teraction matrixM: the problem is in fact to find the
best upper bound faF given an interaction matrid .
This question is the discrete translation of the famous
16th Hilbert’s problem of determining an efficient up-
per bound for the number of limit cycles of a poly-
nomial differential system. Let us summarize the role
of the architecture of positive and negative (with an
odd number of inhibitions) loops d#l on the occur-
rence of multiple stationary behaviours as obtained in
[8—15]: if the number of genes and the number of in-
teractions are the same, there is only one isolated loop



498

in M and either this loop is negative and the lowest
bound (0) forF is reached, or this loop is positive and
the upper bound2l) for F is reached. If the num-
bers of genes and interactions are respectiveind

n + 1, there are two interaction loops with the follow-
ing structure; if both loops are negative = O; if there

are a positive loop and a negative loop disjoit= 0;

if there is a positive loop intersecting a negative loop,
F =1; if there are two disjoint positive loops, = 2.

If, more generally, the numberof loops ism, then: if

all loops are negatively = 0; if all loops are positive,
then: 2< F < 2™, and if and only if all loops are pos-
itive and disjoint,FF = 2™. An interesting open prob-
lem is now to make exhaustive the determinatiorof
andsS and, in particular, to find the circumstances (re-
lated to the loops structure) in which we can relate the
number of intersecting and isolated loopsHAo The
approach for solving this open problem could consist
first in finding coherent relationships between analo-
gous properties discovered for continuous versions of
the regulatory networks and for general Boolean net-
works.

7. Conclusion

A geneticist could exploit the results given in the
above paper as follows: we have shown in Section 4
that it would be possible to characterize the mini-
mal interaction matrices having certain state vectors as
fixed configurations. The determination of these ma-
trices is not unique, but permits to focus on certain
important equivalence classes, in which the expected
matrix has to belong. This considerably restricts the
choice of the possible interaction matrices compatible
with observed fixed configurations, when it is impos-
sible to directly get from experiments all interaction
coefficients, but also when it is only possible to ob-
serve the phenomenology of fixed or cyclic configura-
tions. This corresponds in genetics to the phenotypic
observation of stationary expression behaviours with-
out experimental measure of the inhibitory and acti-
vatory coefficients of promoters and repressors. The
possibility to obtain (even in an equivalence class) a
sketch of the interaction matrix permits to construct
(by randomising the unknown coefficientsidf) more
complicated interaction matrices, then to test if they
still have the observed states as fixed configurations,

J. Demongeot et al. / C. R. Biologies 326 (2003) 487-500

finally keep or reject these tested matrices and pro-
pose further experimental strategies, using bio-arrays
for refining the knowledge about the genetic network

interaction structure.
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