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Abstract

The new tools available for gene expression studies are essentially the bio-array methods using a large variety o
detectors (isotopes, fluorescent markers, ultrasounds...). Here we present first rapidly an image-processing method in
of the detector type, dealing with the noise and with the peaks overlapping, the peaks revealing the detector activity
in the presented example), correlated with the gene expression. After this primary step of bio-array image processin
extract information about causal influence (activation or inhibition) a gene can exert on other genes, leading to cl
genes co-expression in which we extract an interaction matrixM and an associated interaction graph G explaining the ge
regulatory dynamics correlated to the studied tissue function. We give two examples of such interaction matrices and g
flowering genetic regulatory network of Arabidopsis thaliana and the lytic/lysogenic operon of the phage Mu) and aft
theoretical rigorous results recently obtained concerning the asymptotic states generated by the genetic networks hav
interaction matrix and reciprocally concerning the minimal (in the sense of having a minimal number of non-zero coef
matrices having given stationary stable states.To cite this article: J. Demongeot et al., C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Traitement d’images bio-array et modélisation de réseaux génétiques. Cet article décrit d’abord rapidement quels so
les nouveaux outils utilisés pour étudier l’expression des gènes, essentiellement les bio-arrays, qui mettent en œuvr
nombre de détecteurs physiques (isotopes, marqueurs fluorescents, ultra-sons...). Nous présentons une méthode d
d’images indépendante du type de détecteur, traitant le problème du bruit et des superpositions de pics, ces dernie
l’activité du détecteur (isotopique dans le cas choisi ici) corrélée avec l’expression des gènes correspondants. Après
stade de traitement d’images bio-array, on peut extraire l’information relative à l’influence (activation ou inhibition)
gène peut exercer sur les autres gènes, conduisant ainsi à l’apparition de groupes de co-expression, d’où l’on pe
une matrice d’interactionM et un graphe d’interaction associé G, susceptibles d’expliquer la dynamique de la rég
génétique corrélée avec la fonction tissulaire associée. Nous donnons quelques exemples de telles matrices et de t
d’interaction (en particulier dans le cas du réseau de régulation génétique de la floraison d’Arabidopsis thalianaet dans celui de
l’opéron lytique/lysogénique du phage Mu), et ensuite quelques résultats théoriques rigoureux récemment obtenus s
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écrirons les
.

asymptotiques générés par des réseaux génétiques ayant une matrice d’interaction donnée. Réciproquement, nous d
matrices minimales (au sens du nombre de leurs coefficients non nuls) ayant des états stationnaires stables donnésPour citer
cet article : J. Demongeot et al., C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

The total mRNAs of genes to test are extracted fr
the studied tissue (in the present case a glioblast
tissue). DNAs are synthesized by reverse transcrip
from these mRNAs including bases labelled with
isotope P33. Resulting DNAs are then tested agai
identified complementary DNAs (cDNA targets), pr
viously amplified by PCR and fixed on a nylon g
The hybridisation results are revealed in a phosp
imager and yield a digital image coming from the
dioactive hybridisation plate, called the bio-array i
age or shortly the bio-image. cDNA hybridised with
P33DNA means that the complementary sequence
the P33DNA is present in the related mRNA, provin
that the corresponding gene is expressed in the stu
tissue.

2. Peak segmentation

The first encountered problem is the fact that
bio-images are extremely noisy and that we have
low-pass them in order to suppress the high-freque
noise. The result of this pre-treatment (Fig. 1)
a better separation of the isotopic activity pea
allowing a watershed separation and contouring [1
but it often leads to over-estimating the peak activit

Then we will apply a more accurate segme
tation and contouring method called the potent
Hamiltonian or ‘Gaussian stamping’ method: let
remark that the peaks are about Gaussian, with a
atively weak kurtosis and skewness allowing in p
ticular the respect of the conservation ‘law’: 2/3 of
the peak activity are concentrated into the set of po
(x, y) where the Gaussian curvatureH(x,y) vanishes,
i.e. inside the maximum gradient line of the peak.
exploiting this property, it is possible to neglect t
part of the peak outside the projection of this rema
Fig. 1. Raw data (left), watershed segmenting (top right),
contouring (bottom right).

able line, called in the following the characteristic lin
its equation being:

H(x,y)= ∂2g/∂x2 ∂2g/∂y2 − (∂2g/∂x ∂y)2 = 0

whereg(x, y) is the grey function at the pixel(x, y).
We are thus led to consider the new grey fu

tion H(x,y) instead of the functiong(x, y) and its
level line H(x,y) = 0. We display after a plane dif
ferential system of which the characteristic line is
limit cycle. Let H ′(x, y) be the function defined by
H ′(x, y) = |H(x,y)|. Vanishing ofH ′(x, y) occurs
on the characteristic line (see Fig. 2 for the visuali
tion of g andH ′) and if we consider the following
crude system:

dx/dt = −α ∂H ′/∂x + β ∂H ′/∂y
dy/dt = −α ∂H ′/∂y − β ∂H ′/∂x
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Fig. 2. Representation ofg, G, H ′ (with indication of potentialp
and Hamiltonianh parts) for a Gaussian peak and the result of
Hamiltonian segmentation (below left).

whereα andβ are real parameters, then the first p
of this differential system is of steepest descent po
tial nature and along this flow, the orbits converge
the set of zeros ofH ′(x, y), on which the second pa
of convective Hamiltonian type becomes prepond
ant [1]. Parametersα andβ are used to tune the spe
of convergence to the limit cycle. To cope with rando
noise and numeric instabilities, we modify slightly t
system into:

dx/dt = −α ∂H ′/∂x
[
H(x,y)/G(x, y)

]+ β ∂H ′/∂y
dy/dt = −α ∂H ′/∂y

[
H(x,y)/G(x, y)

]− β ∂H ′/∂x,

whereG(x,y)= ∥∥grad(g)
∥∥2

The added termH(x,y)/G(x, y) speeds up the de
scent to the vanishing ofH(x,y) and forces the sta
bility. The usual discretization of Runge–Kutta yiel
ultimately the algorithm, which is quite easy to impl
ment. On each pixel(i, j) – boundary effects bein
neglected –, the functionH(i, j) reads:

H(i, j)= [
g(i + 2, j)− 2g(i + 1, j)+ g(i, j)

]

Fig. 3.g (top) andH ′ (bottom) for close Gaussian peaks.

Fig. 4. Treated bio-image (left), succeeding limit cycle (middle) a
false contour (right).

× [
g(i, j + 2)− 2g(i, j + 1)+ g(i, j)

]
− [

g(i + 1, j + 1)− g(i, j + 1)

− g(i + 1, j)+ g(i, j)
]2

We have seen an important property of the charac
istic line, i.e. in the case of a Gaussian peak, it delim
a volume equal to 2/3 of the total volume of the peak
This property remains about exact in case of kurto
and skewness of the peak. Hence by multiplying
3/2 this volume, we get a good estimation of the ge
activity and this value is better than that obtained b
watershed method due to over-segmentation (Fig
This approach is interesting because the lower pa
the peak is often noisy. The method seems part
larly efficient when the peaks are well separated
they are close (Fig. 3), then we need to tune the
rametersα andβ (Fig. 4). In further developments o
the method, we look for a dynamical calculation
these parameters from the data. Finally, we can s
dardize the estimated activity in terms of a bio-ima
with small squares symbolizing in grey levels the d
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Fig. 5. Standardized bio-image (the treated sub-image of Fig.
inside the black rectangle).

gree of hybridisation of the cDNAs (Fig. 5). From su
bio-images acquired at different times of the cell cy
in cells from the same tissue, we can study the inte
tions between genes by estimating an interaction
trix.

3. Interaction matrix M

A major problem a geneticist has presently to fa
since the introduction of the bio-array imaging is t
estimation of the intergenic interaction matrixM that
rules the observed genes expression in operons
genetic regulatory networks [3–7]. This interacti
matrix is similar to the synaptic weight matrix, whic
rules the relationships between neurons in a ne
network. Hence, it is in general of a great biologic
interest and relevance to determine matrices ha
characteristics like: (i) a minimal number of non-zer
coefficients for a given set of stationary behavio
(fixed points or cycles), (ii ) a minimal number of
positive or negative circuits, controlling the numb
of attractors and their stability (cf. [8–21] for bo
the discrete and the continuous case). In this pa
we give some general results about the relations
between the positive and negative circuits in the gr
of the interaction matrixM and the existence o
fixed points. This permits us to characterize minim
matrices, given dynamical behaviours, and there
partly solve the first problem. Finally, we construct
a bound for the number of fixed points in terms
the number of positive circuits in the graph of t
Fig. 6. Distributions of domestic (bottom) and all genes (mid
right), crossing-over (male red and female blue top) and transl
tions (middle left) along chromosome 3.

interaction matrixM. So we partly solve the secon
problem too.

In general, it is very difficult to have exhaustive
the interaction matrices: in the genetic literature a
also by observing co-expressions through bio-arr
imaging, it is possible to qualitatively or even qua
titatively estimate the inhibitory (in case of repre
sion by a protein obtained from the expression
a gene) or activatory (in case of induction or p
motion) coefficients of the interaction matrix. If w
have no information, we can randomly choose
matrix by respecting certain basic rules, e.g., by
specting certain proportions of activatory or inhibito
interactions. We can, for example, obtain the lo
tion density of expressed ubiquitory genes (calcula
from http://www.citi2.fr/GENATLAS/) and then ran-
domly simulate the interaction matrix and the in
tial conditions of the gene expression, by sampl
them 100 000 times, the interaction matrices resp
ing the constraint to have 10% (resp. 10%) of ne
tive (resp. positive) interactions, like in theArabidop-

http://www.citi2.fr/GENATLAS/
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Table 1
Second column shows the distribution signatures and third the number of differences (− or + being not taken different from=) between a
given distribution and the crossing-over one as reference

Ubiquitory genes distribution − − − + + = − + − = = + + = − + + + − + + 3/21
All genes distribution + = − + + − − + − + = + − + − = + + − − + 9/21
Crossing-over distribution − = = = = + + − − − = + + − − = = = + + + 0/21
Translocation distribution = − + − = = + − + − = = + − + − = = + − + 3/21
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sis thalianagenome [3]. Fig. 6 below gives the di
tribution of the co-expression of the ubiquitory gen
calculated from the expected stationary behaviour
responding to a random choice of the interaction m
trix and of the initial conditions: we have system
ically calculated attractors (fixed points or limit c
cles) corresponding to an initial condition and an
teraction matrix, and then we have calculated the
quency of observing the expression of each ubiq
tory gene in these attractors. In the absence of c
plementary information about the localization of t
inhibitory or activatory interactions between ubiqu
tory genes, the obtained co-expression distributio
just a reflect of the spatial distribution of these ubiq
tory (domestic or housekeeping) genes along the
man chromosome 3 showing that it is related to
rearrangements (due to physiological crossing-ove
to pathological translocations) distributions, this p
enthood being proved by the analogy between t
signatures—i.e. their succession of monotony in
vals of increase(+) or decrease(−)—as shown in Ta-
ble 1.

By comparing the distribution signatures given
Table 1 above, it is easy to prove that we must re
the hypothesis that ubiquitory genes and transloca
distributions are different from the crossing-over d
tribution (p < 0.001), but we cannot reject the hypot
esis of a difference between all genes and the cross
over distribution.

The general coefficientmij of the interaction ma
trix M is equal to+1 if the gene Gj activates the
gene Gi , equal to−1 if the gene Gj inhibits the gene
Gi and equal to 0 if Gj and Gi have no interac
tion, Gi being equal to+1 (resp.−1), if it is (resp.
not) expressed. Then the change of statexi of the
gene Gi betweent and t + 1 obeys a threshold rule
xi(t + 1) = H(

∑
k=1,n mikxk(t) − bi) or x(t + 1) =

H(Mx(t) − b), whereH is the sign-step function
(H(y) = 1, if y � 0 andH(y) = −1, if y < 0) and
thebis are threshold values. In the case of small re
latory genetic systems (the smallest being called o
ons), the knowledge of such a matrixM permits to
make explicit all possible stationary behaviours of
organisms having the corresponding genome: for
ample, in the genetic regulatory network that rules
Arabidopsis thalianaflower morphogenesis (Fig. 7
the interaction matrix is a(11,11)-matrix, with only
22 non-zero coefficients. This matrix presents a c
tain number of positive or negative circuits and on
four observed attractors [3].

For each operon, we can define an interac
matrix M, which just expresses that if its coefficie
mij is positive (resp. negative), the genej is a
promoter or activator (resp. repressor or inhibit
of the genei. If mij is null, then the gene Gj has
no influence on the expression of the gene Gi . The
interaction graph can be built from the interacti
matrix M by drawing an edge+ (resp.−) between
the vertices representing the genesj andi, if mij > 0
(resp.< 0). In order to calculate themij s, we can
either determine thes-directional correlationρij (s)

between the state vector{xj (t − s)}t∈C, t�s of gene
j at timet − s and the state vector{xj (t)}t∈C, t�s of
genei at timest, t varying during the cell cycle C, o
identify the system with a Boolean neural network.

We define the connectivityK(M) of the interaction
matrixM by the ratio between the numbersm of edges
of the interaction graph andn of vertices: in general
for known operons and genetic regulatory netwo
(lactose operon [5,6], Cro operon of the phageλ,
lysogenic/lytic operon [4,7] of the phage infectin
E. coli, gastrulation regulatory network...),K(M) is
between 1.5 and 3. The observed induction propor
(number of positive edges divided bym) is between
1/3 and 1/2. If mij s are unknown, we can take the
randomly by respecting connectivity and inducti
proportion.
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cs
Fig. 7. Interaction graph of the flowering genetic regulatory network ofArabidopsis thaliana(right) and an attractor of its Boolean dynami
(left).
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4. Genetic networks dynamics

If we consider the interaction graph of the floweri
genetic regulatory network ofArabidopsis thaliana
(Fig. 7) [3], then we can easily define from it a Boole
dynamics with threshold 0: the genei has the state
1 if it is expressed and−1 if not. The change o
state of genei between the timest and t + 1 obeys
a majority rule, i.e. we calculate the numbers of
neighbours in state 1 with positive interaction and w
negative interaction: if these two numbers are eq
then the new state ofi is 1; if the activatory (resp
inhibitory) neighbours dominate, then the new st
of i is 1 (resp.−1). When the timet is increasing,
the configuration of gene states reaches a stable s
configuration (either a fixed configuration or a cyc
of configurations), called an attractor of the gene
network dynamics. In Fig. 7 (left), an example of su
an attractor is given, with final states (in black box
different from the initial conditions.

We will present now first some qualitative resu
from the human genome observation, and after so
theoretical corresponding statements recently prov

– in 1949, Delbrück [17] conjectured that the pre
ence of positive loops (i.e. paths from a genei to
itself having an even number of inhibitions [11
in the interaction graph was a necessary con
tion for the cell differentiation; this conjecture h
been more precisely written in a good mathem
cal context by Thomas in 1980 [16];
f

– in 1993, Kauffman [22] conjectured that the me
number of attractors for a Boolean genetic n
work with n genes and with connectivity 2, wa
equal to

√
n. This conjecture is supported by re

observations: we have about 30 000 genes in
human genome and about 200 different tissu
which can be considered as different attract
of the same dynamics. ForArabidopsis thaliana,
K(M) = 22/11= 2 and there is 4≈ √

11 differ-
ent tissues (sepals, petals, stamens, carpels
and for Cro operon [18] of phageλ,K(M) =
14/5 = 2.8 and there is 2≈ √

5 observed (lytic
and lysogenic) attractors.

Recently [8–15], these conjectures have been
tially proved.

Proposition 1. If all loops of the interaction graph are
positive, then there exists a state vectorx
= (x1, . . . , xn) in {−1,1}n, such that x and −x

= (−x1, . . . ,−xn) are fixed configurations of the ne
work dynamics.

Proposition 2. If all loops of the interaction graph are
negative, then there is no fixed configuration.

Proposition 3. Let a network havingn genes andn
interactions, then a necessary and sufficient condi
of existence of a fixed configurationx is the existence
of a positive loop and−x is also fixed.
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Proposition 4. Given a state vectorx, the set of
minimal matricesM havingx as fixed configuration
is given by the following conditions:

(1) mij = aij xi xj , whereaij � 0 and, for all i, there
existsj (i) such thataij (i) > 0;

(2) −aij (i) < bi � aij (i), where aij s and bis are
weights and thresholds of the genetic network[14].

Proposition 5. If m is the total number of positiv
loopsC, then the number of fixed configurations is le
than or equal to2m, and this upper bound is reache
if and only if for any positive loopC, there is no edge
(x, y) | x /∈ C, y ∈ C.

Proposition 6. If the genetic network hasn genes and
2n interactions, then the expectation of the num
of its fixed configurations is

√
n, if n is sufficiently

large [15].

Proposition 7. If the interaction graphG is a con-
nected digraph without loops havingn genes and le
suppose that, for anyi, bi > 0 and all mij s are pos-
itive and verify either(

∑
j mij � bi and, for anyk,∑

j 
=k mij < bi) = AND rule, or (for eachj , mij �
bi) = OR rule, then the number of fixed configuratio
is 2(n−1)/2 for n odd, and2(n−2)/2 + 1 for n even[14].

Numerous applications of the results above are p
sible in various regulatory systems [23–40], but
will focus here in the following on a very simpl
operon governing the choice between the lytic a
lysogenic stationary states forEscherichia coli in-
fected by the bacteriophage Mu.

5. An example of operon: the lytic/lysogenic
operon of the bacteriophage Mu

Understanding the behaviour of the tempered b
teriophage Mu, considered as a transposon, co
tutes a real progress in the knowledge of transposi
mechanisms [41].

A Boolean model of the interactions between
expression products of the Mu genome shows the
cessity for the removal of the auto-inhibition of th
protein Ner (negative loop), which allows the cons
tutive expression of the phage promoter Pe (posi
loop) to demonstrate a bi-stability [11,42]. The pre
ence of the prophage state instability is necessary
the induction of prophages. A review ofEscherichia
coli factors influencing the Mu behaviour allowed
to propose the Integration Host Factor (IHF) and
Inversion Stimulating Factor (ISF) as being resp
sible for the removal of auto-inhibition and for th
prophagic state instability. The modelling of their e
fects by a differential system clearly shows the sa
lytic/lysogenic proportions than those experimenta
obtained during the exponential bacterial growth ph
and the stationary bacterial growth phase.

These encouraging results demonstrate the ne
sity of quantitative measures for lytic/lysogenic pr
portions and intra-cellular concentrations of differe
Escherichia colifactors during the entire length of th
growth cycle, in order to better understand the ind
tion context of the bacteriophage Mu.

The bacteriophage Mu has been discovered in 1
by L. Taylor [43]. During the infection step, Mu in
corporates its DNA and proteins at random locatio
in the host bacterial chromosome [44]. That indu
mutations and new auxotrophies and Mu belong
the large family of transposable elements [45]. Th
is two developmental cycles for Mu: after integrati
in the bacterial chromosome, the Mu DNA is mul
plied by a series of replicative transpositions, giv
between 50 and 100 new viruses after lysis of the b
terial host (lytic cycle). A weak proportion of infecte
bacteria becomes lysogenic, the Mu DNA remain
inactive (lysogenic cycle). The induction rate rep
sents the proportion of such lysogenic bacteria en
ing in the lytic cycle.

Mu infects enterobacteria and in particularE.
coli [46] and the integration of its genome into t
chromosome of these bacteria involves the pha
transposase pA and its activator pB [47] (cf. Fig.
In general, this integrated DNA is amplified throu
a series of replicative transpositions [48] (involvi
the transposase pA and its activator pB), then the
phagic functions are synthesized, leading to ass
bling numerous viral particles dispatched in the ex
cellular medium after the lysis of the host cell. Amo
a population of infected bacteria, a small proport
will give birth to lysogenic cells, in which the phag
DNA remains passive; this DNA can be replicated d
ing the further mitoses of the lysogenic cell or can
ter in a lytic cycle. After integration, the choice b
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Fig. 8. Simplified scheme for the viral DNA of Mu; (A) show
different genes in transcriptional units and the actions of th
expression products on the promoters’ activity. The fixation s
of the different phagic (e.g., Ner on O2) or bacterial (e.g., IHF on
O1) proteic factors are represented in (B).

tween the two possible developmental cycles (lytic
lysogenic) is regulated at the levels of transcript
and replicative transposition of the Mu genome.

– Transcriptional regulation.The viral DNA has a
size of 37 kb [49] and possesses two promo
Pe and Pc constitutively expressed [50] (Fig. 8
The early transcript from Pe codes for the tra
posase pA, for its activator pB and for a prote
Mor activating (via the promoter P and the prote
C [51,52]) the cascade of the late functions of
lytic cycle. The transcript coming from Pc cod
for the repressor c preferentially fixed on the o
erators O1 and O2 (Fig. 8B) for repressing Pe a
stabilizing the Mu DNA in its inactive form (the
prophage DNA). At high concentration, c is al
fixed on O3, repressing Pc and hence regula
its own synthesis [53]. The Ner protein is fixe
between Pe and Pc and inhibits the transcrip
from these two promoters [47,54].

– Transpositional regulation.During the transposi
tion, the transposase pA transiently fix the e
tremities of the Mu DNA, attL and attR, and th
operators O1 and O2 in stabilizing a tetrame
structure, which leads the Mu DNA to a speci
configuration, the transposome. The represso
binds also the extremities of the Mu DNA wit
a weak affinity [55], entering in competition wit
pA and then impeaching it to bind the two ope
ators and the two extremities [56]. Hence repr
sor c inhibits the lytic cycle both at the transcri
tional and transpositional levels, and the tra
Fig. 9. Simplified scheme of the bacteriophage Mu operon (the
arrow symbolizes the presence of a positive loop).

posase pA being physically and functionally u
stable in vivo [57], the viral genome amplificatio
implies a non-transient expression of the promo
Pe.

5.1. Discrete logical (Boolean) model

Experiments about the phage Mu are done du
the exponential growth phase of the bacteria for
creasing the homogeneity of the observed bacte
states. The lysogenic frequency is highly depend
on the used protocol (1% to 50%). We will base o
model on lysogenic induction rates observed in ex
nential phase (0.001%) and in stationary phase (a
100%) (cts 62, temperature 30◦C). For interpreting
these experimental data, we used first Thomas’ lo
cal approach [16,18,20,21], in whichx represents the
repressor c and the entityy denotes the group of pro
teins Pe, Ner, pA, pB, Kill and Mor; their interaction
can be designed as in Fig. 9.

Variablesx and y take values 1 (expression/pr
sence in the cell) or 0 (non-expression/absence f
the cell). With this notation, the stateEx , x = 1 and
y = 0 corresponds to the lysogenic state and the s
Ey , x = 0 andy = 1 to the lytic cycle. Let us notice
that it is not necessary to explicitly represent the au
inhibition of the repressor c, because c inhibits
and auto-inhibits itself at high concentrations, he
maintaining its concentration between two thresho
θ1 andθ2:

Below θ1 (e.g.,x = 0), the repressor c has insufficie
concentration to be fixed to the operators O1 and
hencex does not inhibity. Betweenθ1 and θ2, x

inhibits y but is not sufficient for fixing O3; henc
there is no auto-inhibition ofx. Aboveθ2, x inhibits



J. Demongeot et al. / C. R. Biologies 326 (2003) 487–500 495

tor
s
state

, w

titu-
-

ic

o
s

A)

But
ther

].
is

nt.
the
the

nd
le

e
art
-
s-

the
ver
].
tive
a-
is
to

an
ut
e

in
n-
si-
0

in
t
00
the

u
ight
ion
n 2

e

by
ing
ary
tal,
The
ent
e, is
der
les

lue
e one
re it
Fig. 10. Dynamical behaviour of Mu alone (A) and with a fac
cancelling auto-inhibition ofy (B). The stationary steady state
are represented in bold and superscripts are corresponding to
changes.

y and inhibits itself until going to a level less thanθ2.
Because this negative loop causes a homeostasis
consider forx only the valuesx = 0 andx = 1, and
the self-inhibition is not explicit in the model.

Because the two promoters Pe and Pc are cons
tively expressed,x takes the value 1 if it is not inhib
ited byy: if y = 0, thenx = 1 and ify = 1, thenx = 0.
Reciprocally, ifx = 0,y = 1 and ifx = 1,y = 0, lead-
ing to the following logic equations:

X = ¬y

Y = ¬x × ¬y

wherex andy represent the values of the two log
variablesX andY .

We consider the four possible initial statesEx (x =
1,y = 0),Ey (x = 0,y = 1),Ez (x = 0,y = 0) andEt

(x = 1, y = 1); if two variables ‘enlightened’ tend t
become ‘off’ (noted 1−) or conversely if two variable
‘off’ tend to become ‘on’ (noted 0+), they are not
changing at the same time. For example, 0+0+ gives
10 or 01. The behaviour of this system (cf. Fig. 10
has only a stable stationary state (sss)Ex (x = 1,
y = 0), which corresponds to the lysogenic state.
Mu is a bi-stable system and we have to put ano
information in the model to get a second sss.

For rendering stable the lytic stateEy (x = 0,
y = 1), we need an activation ofy cancelling its
self-inhibition proportionally to its concentration [11
In stationary phase, the proportion of lysogenes
near 100%, despite the fact that c is still prese
Then we need two factors participating either to
maintenance of the passive phage state, or to
lytic cycle induction (both at the transcriptional a
transpositional levels). A review of such possib
cellular factors leads to the following list.
e

– IHF (Integration Host Factor). IHF is a histon
which presents a high affinity for the operator p
of the Mu DNA (Fig. 8B), increasing its curva
ture, hence facilitating the fixation of the repre
sor c on the operators [58,59] and activating
transcription from the promoter Pe passing o
the retro-inhibition by Ner, if c is absent [60
The absence of IHF impeaches any significa
production of phage Mu [61]. The cell concentr
tion of IHF is inversely proportional to the mitos
rate (from 12 000 mol/cell in exponential phase
52 000 mol/cell in stationary phase [61]).

– HU (Histone U). It causes the same effects th
IHF on transcription and transposition [62], b
its concentration does not vary following th
bacterial growth rate [61].

– ISF (Inversion Stimulating Factor). ISF helps c
repressing the lytic cycle: it increases the tra
scriptional repression and inhibits the transpo
tion [63]; its absence multiplies by about 60
until 800 times the viral particles production
vivo [64]. Cell concentration of ISF is maximal a
the start of the exponential growth phase (80 0
mol/cell) and decreases until a rate zero when
growth diminishes [65,66].

– 8-proteins system. For its DNA replication M
depends also on host enzymes, from which e
have been identified [67] and for the degradat
of the transposase pA and catabolism of c o
proteases [41].

5.2. Continuous differential model

IHF is the only bacterial factor activating th
transcription of Pe in absence of c. For 01(Ey) being
a stable stationary state (sss), the activation of Pe
IHF has to equilibrate the repression by Ner, leav
the constitutive expression of Pe to run. In station
growth phase, the induction of prophages is to
despite the presence of a measurable activity of c.
factor ISF helping the action of the repressor c, pres
in exponential phase but absent in stationary phas
responsible for that behaviour. Let us now consi
a continuous differential model, where the variab
are the four states previously considered (Ex , Ey , Et

andEz), IHF and ISF being parameters whose va
changes can favour the passage from a state wher
of these variables dominates to another state whe
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is another dominating. The differential system can
written as:

dEx/dt = −k3Ex/ISF+ (1/3+ ISF/k2)Et

+ (1/3− IHF/k1)Ez

dEy/dt = −k4Ey/IHF + (1/3− ISF/k2)Et

+ (1/3+ IHF/k1)Ez

dEt/dt = −Et +Ez/3

dEz/dt = k3Ex/ISF+ k4Ey/IHF + Et/3− Ez

We assume from experimental data thatk3/k4
= k2/k1 ∼ 6, where k4 and k1 are fixed in such
a way thatEy(∞) = 105 and Ez(∞) = 1 (station-
ary phase condition). Then the non-zero steady s
with Ez(∞) = 1 verifies: Et(∞) = 1/3, Ex(∞)

= ISF(4/9 − IHF/k1 + ISF/3k2)/k3, Ey(∞)

= IHF(4/9+ IHF/k1 − ISF/3k2)/k4.

5.3. Results

We have simulated (Mapple Runge–Kutta 4 w
constant steps) the dynamical behaviour of 100
phages Mu initially in lysogenic state (Ex(0) = 105,
and Ey(0) = Ez(0) = Et(0) = 0), in exponentia
growth phase (IHF= 12 000 mol/cell, ISF= 80 000
mol/cell) and in stationary growth phase (IHF=
52 000 mol/cell, ISF= 1 mol/cell) with parameter
values equal tok1 = 100,k2 = 700,k3 = 1800,k4 =
300.

In stationary phase (Fig. 11), the lytic state(Ey)

is increasing and reaching a plateau of 100 000 l
cells, which well corresponds to the experimental d
and give an estimation of the duration of the time u
(0.004∼ 10 days).

In exponential phase (Fig. 12) the lysogenic st
(Ex) is practically constant with only a loss of 15
bacteria after 200 days.

To estimate the robustness of these dynam
behaviours with respect to the values of thek1 andk4
parameters, we show that in exponential phasek4 has
no incidence andk1 can vary between 10 and 500
(Fig. 13), without changing the agreement betwe
predicted and observed dynamical behaviours.

The stability study in the neighbourhood of t
stationary states is done by calculating the eigenva
of the Jacobian matrix of the differential system abo
0 is always an eigenvalue that causes an asymp
Fig. 11. Simulation of the behaviour of 100 000 Mu lysogenes w
bacteria are in stationary phase.

Fig. 12. Simulation of the behaviour of 100 000 Mu lysogenes w
bacteria are in exponential phase.

instability (but the system is trajectorially Lyapuno
stable) and, in stationary phase, among all ot
eigenvalues, two are complex, with negative real p
whereas one is real negative; in exponential phase,
are real negative and one is real positive.
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Fig. 13. Evolution of the asymptotic values ofEx andEy in the
exponential phase with respect to thek1 values.

5.4. Discussion

The Boolean model has shown the necessity
suppress the self-inhibition by Ner in order to ge
bi-stability. The continuous version explains in t
lytic phase the reaching a plateau behaviour for
01 state after 10 days and, in the lysogenic phase
long transient of the 10 state (1% of decrease a
3 months). In order to get a more predictable mod
we need measures of the proportion lytic/lysoge
bacteria on a wider interval of growth rates (the lo
growth rateR(t) coming from a logistic or from
a Monod saturation model [68]). Then the syst
would become non-linear with ISF and IHF bei
proportionally respectively toR(t) and dR(t)/dt .

6. Open problems

A frequent criticism made about the Boolean mo
els is their unrealistic number of levels (two); it is po
sible to easily relax this constraint by considering
ther a multi-threshold network (for which most of th
results of Section 4 are still available), or a non-lin
automaton, like the following:

xi(t + 1)

= sup

(
−1, inf

(
1, xi(t)
− sg

(∑
j

mij

(
1+ xj (t)

)(
1− xj (t)

))

+ sg

(∑
j

mij

(
1− xj (t)

))

+ sg

(∑
j

mij

(
1+ xj (t)

))))

where sg(y) = 1, if y > 0, sg(y) = 0, if y = 0
and sg(y) = −1, if y < 0, or, like in Section 5, a
differentiable system. We can also merge the Bool
and the differentiable approach in a hybrid system [
70].

Another perspective exists for the interaction m
trices introduced above, i.e. the ability to calculate
barycentre between two matrices by using class
(spectral or L2) distances between matrices, then
build phylogenic trees among a set of species avoid
the complex problems coming from the non-unic
of L1 (Hamming or Manhattan) barycentres met
the sequence based phylogenic trees. The interac
based phylogenic trees could reflect more the geno
function than the genomic anatomy and hence co
explain more deeply the evolution trends, e.g., by d
tinguishing the evolution of domestic genetic reg
latory networks (involved in rearrangements [12,1
and that of high-level genetic regulatory networ
(corresponding for example to brain signalling or h
monal regulatory systems), the complexity of their
teraction matrices being probably of the same orde
magnitude than the complexity of the metabolic int
action matrices corresponding to their expressed
teins (carriers, receptors or enzymes) [71,72].

A last important open problem concerns the re
tionship between the numberF of fixed configura-
tions and the numberS of interaction loops of the in
teraction matrixM: the problem is in fact to find th
best upper bound forF given an interaction matrixM.
This question is the discrete translation of the fam
16th Hilbert’s problem of determining an efficient u
per bound for the number of limit cycles of a pol
nomial differential system. Let us summarize the r
of the architecture of positive and negative (with
odd number of inhibitions) loops ofM on the occur-
rence of multiple stationary behaviours as obtaine
[8–15]: if the number of genes and the number of
teractions are the same, there is only one isolated
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in M and either this loop is negative and the low
bound (0) forF is reached, or this loop is positive an
the upper bound(21) for F is reached. If the num
bers of genes and interactions are respectivelyn and
n + 1, there are two interaction loops with the follow
ing structure; if both loops are negative,F = 0; if there
are a positive loop and a negative loop disjoint,F = 0;
if there is a positive loop intersecting a negative lo
F = 1; if there are two disjoint positive loops,F = 22.
If, more generally, the numberS of loops ism, then: if
all loops are negative,F = 0; if all loops are positive
then: 2� F � 2m, and if and only if all loops are pos
itive and disjoint,F = 2m. An interesting open prob
lem is now to make exhaustive the determination oF

andS and, in particular, to find the circumstances (
lated to the loops structure) in which we can relate
number of intersecting and isolated loops toF . The
approach for solving this open problem could con
first in finding coherent relationships between ana
gous properties discovered for continuous version
the regulatory networks and for general Boolean n
works.

7. Conclusion

A geneticist could exploit the results given in t
above paper as follows: we have shown in Sectio
that it would be possible to characterize the mi
mal interaction matrices having certain state vector
fixed configurations. The determination of these m
trices is not unique, but permits to focus on cert
important equivalence classes, in which the expe
matrix has to belong. This considerably restricts
choice of the possible interaction matrices compat
with observed fixed configurations, when it is impo
sible to directly get from experiments all interacti
coefficients, but also when it is only possible to o
serve the phenomenology of fixed or cyclic configu
tions. This corresponds in genetics to the phenoty
observation of stationary expression behaviours w
out experimental measure of the inhibitory and a
vatory coefficients of promoters and repressors.
possibility to obtain (even in an equivalence class
sketch of the interaction matrix permits to constr
(by randomising the unknown coefficients ofM) more
complicated interaction matrices, then to test if th
still have the observed states as fixed configurati
finally keep or reject these tested matrices and p
pose further experimental strategies, using bio-ar
for refining the knowledge about the genetic netw
interaction structure.
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