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ABSTRACT

Motion artifacts can be a significant factor that limits the
image quality in high-resolution PET. Surveillance systems
have been developed to track the movements of the subject
during a scan. Development of reconstruction algorithms
that are able to compensate for the subject motion will in-
crease the potential of PET. In this paper we present a list
mode likelihood reconstruction algorithm with the ability
of motion compensation. The subject motion is explicitly
modeled in the likelihood function. The detections of each
detector pair are modeled as a Poisson process with time-
varying rate function. The proposed method has several
advantages over the existing methods. It uses all detected
events and does not introduce any interpolation error. Com-
puter simulations show that the proposed method can com-
pensate simulated subject movements and that the recon-
structed images have no visible motion artifacts.

1. INTRODUCTION

Recent developments in PET detector technology have dra-
matically increased PET resolution, which results small move-
ments of the subject can be a significant factor that lim-
its the image quality. It has been demonstrated that head
movement can significantly degrade the image resolution in
human brain imaging. Motion is not a problem inin vivo
animal imaging when it is performed in anesthetized ani-
mals; however, anesthesia can cause substantial alterations
in physiology and metabolism. In particular, it is extremely
difficult or impossible to assess brain function in animals
that are in an artificial coma. Development of reconstruction
algorithms with motion compensation will allow imaging of
awake animals, which will make it possible to understand
the brain changes that result in the behavioral phenotype of
bioengineered animals.

The basic approach is to use a position monitoring sys-
tem to track the subject movements and to compensate the
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motion in reconstruction algorithms. Several motion track-
ing systems have been studied for PET imaging. Daube-
Witherspoonet al. [1] reported a radio frequency based
measuring system. Other researchers [2, 3, 4, 5] have fo-
cused on optical systems such as Polaris (Northern Digital,
Inc.; Waterloo, Canada). These systems are capable of mea-
suring rigid body motion in six degrees of freedom.

Methods for correcting motion have also been devel-
oped. However, they primarily focused on correction of
interframe movements. The detected events are first gated
into different frames with the aid of some external signal,
such as belly-belt for respiratory motion, ECG signal for
cardiac motion, or signal from a position tracking system
[6, 7]. Each frame is then reconstructed individually and
summed together after proper transformation (rigid and/or
nonrigid) according to the subject movement. There are sev-
eral problems with the multiple acquisition frame approach.
First, if the subject has too much movement (awake animals
and uncooperative patients), it can result in many low-count
frames. Second, if the object is partially outside the transax-
ial field of view (FOV) of the scanner in a frame, that frame
can not be individually reconstructed. Third, interpolation
error can be introduced when transforming each individu-
ally reconstructed image. In the case of respiratory gated
and cardiac gated studies, reconstruction of each frame is
necessary because the motion vectors have to be estimated
from the reconstructed images. However, when the mo-
tion information is obtained from a position monitoring sys-
tem (such as in brain imaging), reconstruction of individual
frames is unnecessary.

An alternative approach proposed by Daube-Whiterspoon
et al. [1] and Meikleet al. [8] is event-by-event rebinning,
where each event is rebinned into a fixed sinogram (with
respect to the subject coordinate system) by proper trans-
lation and/or rotation according the measured movement.
This approach is attractive since it has the potential to be
implemented in real time in hardware [9]. However, it has
a normalization problem if the movements are not confined
to in-plane translations and rotations. In addition, round-off
error can be introduced in the rebinning procedure.

Another method proposed by Meikleet al.[8] is to post-



process the motion blurred reconstruction using deconvo-
lution. This method has not attracted much attention be-
cause the deconvolution unnecessarily amplifies the noise
in PET data compared to other motion compensation tech-
niques. Moreover, when the movements include significant
rotation, spatially variant deconvolution filters have to be
used, which not only increase the computational cost, but
can also introduce other artifacts.

Here we propose a list mode likelihood reconstruction
algorithm that can compensate for rigid motion. We assume
the motion information is measured using an external track-
ing device. The method does not generate multiple frames,
nor rebin the events, and hence eliminates interpolation er-
rors. It also solves the normalization problem of the event-
by-event rebinning method.

2. LIKELIHOOD FUNCTION OF LIST MODE
DATA WITH MOTION

For static PET imaging with no motion, PET data are gener-
ally modeled as a collection of independent Poisson random
variables. By treating the detections of each detector pair
separately, we have derived the log-likelihood function for
list mode data [10]:

L(x) =
K∑

k=1

log
N∑

j=1

p(ik, j)xj −
N∑

j=1

εjxj ,

wherexj is the mean activity inside thejth voxel of the un-
known image,p(i, j) is the probability of detecting an event
from thejth voxel in theith detector pair,ik is the index of
the detector pair of thekth detection,εj ≡∑i p(i, j), K is
the total number of detections, andN is the total number of
image voxels. Randoms and scatters can also be included in
this model.

When the object is moving during the scan, the mean
detection of each detector pair is changing over time, and so
does the detection probabilityp(i, j). Therefore, we model
the detections of each detector pair as a Poisson process
with time-varying rate functionλ∗

i (t)

λ∗
i (t) =

∑
j

p(i, j, t)xj ,

wherep(i, j, t) is the time-dependent detection probability.
It can be factored into

p(i, j, t) = niai(t)g(i, j, t),

whereni is the detecting efficiency of theith detector pair,
ai(t) is the attenuation factor of theith detector pair at time
t, andg(i, j, t) is the geometric probability of detecting an
event from thejth voxel at theith detector pair at timet.
Here we assume that the activity in the object is constant

during the scan and that the time-dependency of the attenu-
ation and the geometric probability is due to the movements
of the object.

For a Poisson process with rate functionλ(t), with N
events observed from timeT0 to T1 and event arrival times
t1, . . . , tk, . . . , tN , the likelihood function is [11]

P(t1, . . . , tk, . . . , tN |λ(t))

=

(
N∏

k=1

λ(tk)

)
exp

{
−
∫ T1

T0

λ(u)du

}
.

ForN = 0, the product is defined as unity.
Combining the detections in all detector pairs and as-

suming that the detections between different detector pairs
are independent, the log likelihood is therefore given by
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∑
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ik
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whereik is the index of the detector pair of thekth event,
andε∗j ≡ ∑i ni

∫
ai(u)g(i, j, u)du is the sensitivity of the

jth voxel. The major difference betweenε∗j andεj is the
integral over time. Note that the summation is over all pos-
sible detector pairs, not just those have detections.

Once we computeε∗j , we can use the same algorithm
that we have developed for regular list mode reconstruc-
tion [10] to find the maximum likelihood estimate. To con-
trol the noise in reconstructed images, we used the same
quadratic prior function. Readers are referred to [10] for
details of the algorithm.

There are several advantages of the proposed method
over the existing methods. First, the proposed method can
use all detected events, unlike the rebinning method where
events that are not inside the original sinogram space have
to be discarded. Second, the method works even if the ob-
ject is alwayspartially outside the FOV of the scanner, as
long asε∗j > 0 for all voxels. In contrast, the multiple
frame approach would fail if the object is partially outside
the transaxial FOV. Third, no interpolation error is intro-
duced.

3. COMPUTER SIMULATIONS AND RESULTS

We developed a Monte Carlo program to simulate the pho-
ton detection in a PET scanner with arbitrary subject move-
ments. Each movement is defined in six degrees of freedom



(three for translation and three for rotation). When an event
is generated, the program first traces each photon until it ex-
its the object. Then the photon’s position and direction are
transformed according to the corresponding object location
and orientation, and the program continues the trace until
it is detected by a detector or travels outside the scanner.
A coincident event is recorded when both photons are de-
tected. Here we did not simulate random and scatter events.
The object self-attenuation was also ignored. These factors
will be included in future studies. We modeled the detec-
tor crystal as LSO with an attenuation coefficient of 0.082
mm−1.

We first simulated seven point sources in a warm cylin-
der. The objects (point sources and cylinder) underwent a
continuous rotation around the x-axis in the transaxial di-
rection. The rotation was modeled by seven equally spaced
discrete positions (Fig. 1). The PET system simulated was
a Concorde microPET rodent system (Concorde, Knoxville,
TN). The diameter and length of the cylinder are both 50mm.
The total number of events detected during the whole scan
was about 1 million.
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Fig. 1. The side view of the seven positions of the cylinder in
the PET. The axis of rotation is the x-axis (out from the paper).
The angles are -24◦, -16◦, -8◦, 0◦, 8◦, 16◦, 24◦. The seven point
sources are located inside the cylinder with one at the center and
six near the boundary. The scales are in mm.

Fig. 2 shows the detecting efficiency imageε∗j for the
scan with comparison to that of a static scan without motion.
It shows that the rotation reduces the detection efficiency in
the center of the image volume. Fig. 3 shows the recon-
structed image using 1mm cubic voxels. The reconstruction
volume was a cylindrical region that was 4mm larger than
the source in all dimensions. The smoothing parameter was
0.01. All the point sources are well defined with no visible
motion artifacts.

Second, we demonstrated the ability of the proposed
method to reconstruct an object that is larger than the transax-
ial FOV of the scanner. We simulated a long cylinder (di-
ameter = 18mm, length = 125mm) that was placed in the
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Fig. 2. The efficiency images: (a) the efficiency images of the
cylinder scan with rotation; (b) the efficiency images of a static (no
motion) scan. The voxels are 1mm cubic voxels. In each group,
the images are the top view slice (top), the front view slice (lower
left), and the side view slice (lower right) through the center of the
image volume. All the images are in the same color scale.
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Fig. 3. The reconstructed image of the seven point sources inside
a warm cylinder. The images are the top view slice (top), the front
view slice (lower left), and the side view slice (lower right) through
the center of the image volume. All the images are in the same
color scale.

transaxial direction. The transaxial FOV of the scanner is
104mm. In order to scan the whole cylinder, it must be
moved during the scan. We simulated the movement using
two positions as shown in Fig. 4. The multiple frame ap-
proach cannot be used here because of the missing data in
each frame.

In Fig. 5 we show the efficiency image of this simu-
lated scan. The two ends along the x-axis of the image have
less efficiencies because they had been partially outside the
FOV. The reconstructed image is shown in Fig. 6. It shows
no visible artifacts caused by the missing data, despite the
fact that the object was always partially outside the FOV.
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Fig. 4. The configuration of the long cylinder simulation. The
dashed dotted circle indicates the FOV of the scanner. The solid
box indicates the position of the cylinder during the first half of the
scan, and the dashed line indicates the position in the second half
of the scan.
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Fig. 5. The center transaxial slice of the efficiency image of the
long cylinder scan shown in Fig. 4.

4. DISCUSSION

We have proposed a list mode likelihood reconstruction method
for PET with compensation of motion. The proposed method
can incorporate all detected events in reconstruction and
does not require interpolation. It works even if the object
is partially outside the FOV as long as no portion of the ob-
ject has zero detection sensitivity.

In this paper we have assumed the motion vectors are
exact. Real motion tracking systems have finite resolution
and noise, which can degrade the performance of the algo-
rithm. We are currently studying these effects. Future work
will also include more realistic modeling of the photon de-
tection, such as randoms and scatters, and will extend the
method to dynamic reconstruction.

Another direction in which we are working is to re-
duce the computational cost. While computation ofai(t)
andg(i, j, t) is the same as a regular (static) list mode re-
construction, computation of the efficiencyεj can be time-
consuming, and it is required for each scan because of the
variation of the movements. In this paper we computed
a backprojection for each object position. One possible
method to reduce the computation cost is to rebin the nor-
malization factors before backprojection. However, this will
introduce rebinning errors in the efficiency image, and the
effects of such errors need further study.
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Fig. 6. The center transaxial slice of the reconstruction of the long
cylinder.
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