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Abstract

Deferring discretization can occasionally change our perspective on imag-

ing problems. To illustrate, we offer a reformulation of regularized com-

puted tomography (CT) in which the large system of coupled equations for

the unknown smoothed image is decoupled into many smaller and simpler

equations, each for a separate projection. Regularized CT thus becomes a

two-stage process of (nonhomogeneous) smoothing of the projections fol-

lowed by filtered backprojection. As a by-product, the repeated forward and

backprojections common in iterative image reconstruction are eliminated.

Despite the computational simplification, we demonstrate that this method

can be used to reduce metal artifacts in X-ray CT images. The decoupling of

the equations results from postponing the discretization of image derivatives

that realize the smoothness constraint, allowing for this constraint to be an-

alytically “transferred” from the image domain to the projection, or Radon,

domain. Our analysis thus clarifies the role of image smoothness: it is an

entirely intra-projection constraint.

1 Background

In the absence of noise, the basic problem of computerized tomography (CT) is

to determine an unknown image f = f(x, y) from its (forward) projections, or

Radon transform Rf , where (Rf)(t, θ) :=
∫∫

f(x, y)δ(t−x cos θ−y sin θ)dxdy,

where (x, y) are planar coordinates, t is the location along each projection, and

θ ∈ [0, π) is the orientation of the projection. (In this paper we focus on the two

dimensional problem with standard parallel-beam geometry, but the ideas readily

extend to three dimensions and other scanning geometries.) Unfortunately, since
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measurements are never perfect, what we actually observe are the noisy projec-

tion data g = g(t, θ). (To emphasize the essentials of the tomography problem,

we view the unknown f = f(x, y) and the observation g = g(t, θ) as functions,

although the implementation is discrete. See §4.) We make the standard indepen-

dence and locality assumptions that the likelihood P (g|f), or conditional distri-

bution of g given f , equals
∏

p(g(t, θ)|(Rf)(t, θ)), where the product is over all

(t, θ). (This product is nonzero because we take a finite number of factors in our

implementation.) Since the likelihood depends on the particular imaging modal-

ity, we illustrate using X-ray CT for concreteness, although our technique applies

more broadly (e.g., to PET). Here, therefore, b exp(−g(t, θ)) is the observed num-

ber of X-ray photons, Poisson-distributed with mean b exp(−(Rf)(t, θ)), where b

is the mean number of incident photons and f(x, y) is the attenuation coefficient

at (x, y). Our task is to infer the image f given the noisy projections g.

2 Regularized Tomography

Because this inverse problem is ill-posed [1], one typically imposes extra con-

straints on f . In penalized maximum likelihood [2], or regularization, inferring

f amounts to finding that f which minimizes − ln P (g|f) + ρ (f), where ρ (f)

characterizes the extra constraint on f . Here we impose the standard smoothness

constraint that uses the image gradient ∇f = ( ∂f

∂x
, ∂f

∂y
) in the quadratic penalty

ρ (f) := β||∇f ||2, where β > 0, ||f ||2 := 〈f, f〉, and 〈f1, f2〉 :=
∫

f1f2 is an

inner product. Following [3] and to simplify the presentation, we approximate

− ln P (g|f) with the quadratic form ||g − Rf ||2
W

, where ||g||2
W

= 〈g,Wg〉 is

a weighted norm with (diagonal) weight operator W satisfying (Wg)(t, θ) :=
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w(t, θ)g(t, θ). The weight w(t, θ) := b exp(−g(t, θ)) is small for those rays pass-

ing through dense materials such as bone or metal, and larger otherwise. This

formulation of tomography requires that we solve the following “hard” optimiza-

tion problem:

Problem 1 (Regularized CT). Given the projection data g, find the image f that

minimizes

||g −Rf ||2
W

+ β||∇f ||2.

To proceed, let 4 denote ∂2

∂x2 + ∂2

∂y2 , the Laplacian in the plane. Using integration

by parts and zero boundary conditions, we recall that ||∇f ||2 = 〈f,−4f〉. Then

the (linear) Euler-Lagrange equation for Problem 1 is

R∗WRf − β

(

∂2

∂x2
+

∂2

∂y2

)

f = R∗Wg, (1)

where f is unknown and A∗ denotes the adjoint of linear operator A (R∗ is also

known as the backprojection operator). By examining (1), we see that Problem 1

is hard in two related ways.

First, the problem constraints occur in two different domains. Fidelity to the

data (||g − Rf ||2
W

) is enforced in the Radon domain {(t, θ)}, while smoothness

(||∇f ||2) is imposed in the image domain {(x, y)}. Thus we see in (1) the op-

erators R and R∗ for shuffling back and forth between these domains; iterative

solution techniques typically compute these forward and backprojections explic-

itly and often at great expense or inconvenience.

Second, observe that (1) is a coupled equation in the two-variable function

f = f(x, y), i.e., in the large set of variables {f(x, y), for all x, y} under some

discretization of x and y. The coupling arises first because both x− and y− deriva-

tives are present; in addition, R and R∗ are integral operators, and so are not even
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local. The computational difficulty in solving (1) and related tomographic prob-

lems (e.g., emission) has spawned a great deal of work in optimization [4, 5, 6].

3 Decoupled Regularized CT

We seek to formulate the entire regularization problem in a single domain. As

we shall see, working solely in the Radon domain will decouple our large joint

optimization problem into many smaller ones. But first we review the standard

technique for inverting the Radon transform: filtered backprojection. Let the

Fourier transform of g = g(t, θ) with respect to t be denoted (F1g)(τ, θ) =

(2π)−
1

2

∫

g(t, θ)e−iτ tdt, where τ is the spatial frequency along the θ-projection.

Definition 1. Given the function h = h(t, θ), the Riesz potential is the linear

operator Iα satisfying (F1I
αh)(τ, θ) = |τ |−α(F1h)(τ, θ).

Given noise-free observations h = Rf , one can solve for the unknown f by

directly implementing the following classical formula [1] for the inverse of the

Radon transform:

Fact 1 (Filtered Backprojection). R−1 = 1

4π
R∗I−1.

By defining � as the Laplacian ∂2

∂t2
along each projection, we note that I−1 is the

“square root” of −�. This is because Iα1Iα2 = Iα1+α2 and the following:

Fact 2. I−2 = −�.

The proof is that the Fourier transform of −� is τ 2 = |τ |2.

Now recall the Fourier slice theorem, which says that the two-dimensional

Fourier transform of f , evaluated at polar coordinates (τ, θ), is just (F1Rf)(τ, θ).
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Using this theorem, one can relate the two Laplacians 4 and � because the two-

dimensional Fourier transform of −4 is u2 + v2 (where u and v are spatial fre-

quencies for x and y, respectively), or |τ |2 in polar coordinates, which is the one-

dimensional Fourier transform of −�. For details and the extension to higher

dimensions, see [1] and [7]. This crucial but simple idea is called “intertwining”.

Fact 3. The Radon transform R intertwines 4 and �, i.e.,

R4 = �R.

Our main contribution is the realization that by applying intertwining to regu-

larized CT, we can “decouple” this large optimization problem into an equivalent

set of much smaller optimization problems. The idea is to reformulate Problem 1

in terms of h = Rf . We need only transfer the smoothness constraint to the

Radon domain, as the data constraint is already naturally specified there. Inter-

twining allows us to analytically transfer the smoothness constraint to the Radon

domain, as opposed to numerically enforcing it during optimization computations.

Proposition 1 (Smoothness Constraint to Radon Domain).

||∇f ||2 = (4π)−1〈h, I−3h〉, where h = Rf.

For proof, note that−||∇f ||2 = 〈f,4f〉 = 〈R−1h,4R−1h〉= 〈h,R−1∗4R−1h〉.

Now, note that R−1∗ = (4π)−1I−1R, using Fact 1 and the symmetry of Iα.

But then −R−1∗4R−1 = −(4π)−1I−1R4R−1 = −(4π)−1I−1
�RR−1, using

Fact 3. Prop. 1 follows using Fact 2 and because RR−1 is the identity operator.

Thus we can pose Problem 1 in an equivalent, “easy” form in the Radon do-

main, as follows:
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Problem 2 (Decoupled Regularized CT). Given observed projections g, find pro-

jections h = Rf minimizing

||g − h||2W + β ′〈h, I−3h〉, where β ′ := (4π)−1β.

The corresponding Euler-Lagrange equation,

Wh + β ′I−3h = Wg, (2)

where h is unknown, is easy exactly where (1) is hard. First, the forward and

backprojections are eliminated from the optimization; backprojection need only

be done once to determine f from solution h. Second, and more importantly,

equation (2) is really a decoupled set of systems of equations, where each system

corresponds to the unknowns {h(t, θ), for all t}, at each fixed θ. This follows

because operator W is pointwise multiplication by a scalar and I−3 acts only

along t. Thus our “decoupled” approach to regularized CT requires solving the

integral equation (2) in the unknown single variable function h(·, θ), for each fixed

θ.

These decoupled regularization equations (2) are related to direct algebraic

reconstruction tomography (DART) by emphasizing optimization entirely in the

Radon domain [1] (although DART is formulated discretely). However, DART

usually assumes that the weights w(t, θ) are constant in t, which is often not the

case (e.g., X-rays through bone or metal have lower weight than those through

flesh). Thus decoupled regularization gains the benefits of space-varying filtering

while maintaining the simplicity of DART.

One limitation of the proposed approach is that it does not impose consistency

conditions [8, 9]. In addition, we assume the idealized line-integral model of

projection, while discrete regularization techniques more accurately model real
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scanners [12]. Nonetheless, we can still demonstrate (§4) that our method can

remove noise.

4 Results

To solve (2), we observe that W+β ′I−3 is a positive definite operator (if w(t, θ) >

0), and thus the conjugate gradient method can be applied. To discretize the equa-

tions, we sampled in t and θ uniformly. The operator W was implemented by

restriction to the sample locations. The Riesz potential was implemented by tak-

ing 1-dimensional FFTs.

We applied our decoupled regularized CT method to the reduction of metal

artifacts in X-ray CT (Fig. 1) [10, 11, 12]. Since the actual projection data and

scanner parameters were unavailable, we simulated the projections (using Mat-

lab) after rescaling the image pixel values (range 0 to 255) by 0.012 (Fig. 3, top

left). The bright band results from the metal, and is noisier than elsewhere; the

noise is obvious in the single projection in Fig. 2 (solid curve). For each fixed

projection orientation θ, the decoupled regularized CT equation (2) was solved

(b = 109, β = 103) to produce the nonhomogeneously smoothed projection shown

in Fig. 2 (dotted curve). After smoothing each projection independently, filtered

backprojection was applied to the set of smoothed projections (Fig. 3, top right),

producing our final result (Fig. 4), which shows reduced streaking artifacts.
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Figure 1: Streaking artifacts are due to the presence of metal (bright oval) in this

portion of an X-ray CT slice of a hip.
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Figure 2: A simulated projection (solid curve, g(·, θ)) oriented at θ ≈ 45◦ is

noisy particularly in the portion due to the metal (large hump in the center). The

smoothing due to decoupled regularized CT (dotted curve, h(·, θ)) is greater in the

metal portion, where the weights are automatically lowest.
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Figure 3: The simulated projection data g(t, θ) (top left), or Radon transform,

of Fig. 1 shows a bright band due to the metal. The key smoothing action of

decoupled regularized CT (h(t, θ), top right) is localized on the metal band, as

emphasized (bottom) in the result of applying I−1 (a kind of differentiation and

the first step in filtered backprojection) to the difference g − h.
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Figure 4: The result of decoupled regularized CT for reducing streaking artifacts.

Observe that the smoothing effect is primarily near the metal; the rest of the image

is still sharp.
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5 Conclusion

By studying regularized tomography in the continuous domain, we were able to

decouple a linear equation in a two-variable function into a one-parameter fam-

ily of linear equations in single-variable functions. Although we emphasized a

quadratic approximation of the X-ray CT likelihood, our result only hinges upon

Prop. 1, which is independent of the imaging modality. For example, one can set

up decoupled nonlinear equations to fully capture the Poisson likelihood. This

technique can also be applied in three dimensions by extending Facts 1-3. Finally,

the gradient smoothness term can be replaced with related higher-order derivative

penalties while preserving the decoupling of the regularization.
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