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ABSTRACT
Although flattening a cortical surface necessarily intro-
duces metric distortion due to the non-constant Gaussian
curvature of the surface, the Riemann Mapping Theo-
rem states that continuously differentiable surfaces can be
mapped without angular distortion. We apply the so-called
least-square conformal mapping approach to flatten a patch
of the cortical surface onto planar regions and to produce
spherical conformal maps of the entire cortex while min-
imizing metric distortion within the class of conformal
maps. Our method, which preserves angular information
and controls metric distortion, only involves the solution
of a linear system and a nonlinear minimization problem
with three parameters and is a very fast approach.

I. INTRODUCTION

The human Cortex is a highly convoluted surface, i.e.,
functional foci are often buried with cortical sulci and
appear in a number of discrete slices or widely seperated
foci on oppisite walls of a sulcus may appear to be close
together, that makes it difficult to view functional brain
activity in a meaningful way. Additionally, It also makes it
difficult to compare the locations and patterns of functional
activity in humans across subjects because of individual
differences in cortical folding. The surface-based approach
is a useful tool to address these problems.

It is well-known that flattening a cortical surface nec-
essarily introduces metric and areal distortion due to the
non-constant Gaussian curvature of the surface. A num-
ber of techniques have been proposed. An approach that
purports to substantially minimize the metric distortion
(FreeSurfer) was suggested by Fischl et al. [4] and another
one that attempts to reduce the areal distortion (CARET)
by Drury and Van Essen et al. [3]. Both methods have
been successful in comparative and functional investigation
studies. On the other hand, prospects for a ngular distortion
are better since the Riemann Mapping Theorem [1] states
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that continuously differentiable surfaces can be mapped
onto each other without angular distortion. Hurdal et al.
[6] proposed a method using circle packing for quasi-
conformal flattening of cortical surfaces that can handle
both topological disc and sphere cases and yields an upper
bound for distortion, however, it runs slowly. Angenent
et al. [2] proposed another PDE-based method (Laplace-
Beltrami operator) that is much faster than the former
one but cannot handle the topological disc case in general
expcept mapping onto a rectangle. Gu and Yau [5] recently
suggested a new method for computing conformal struc-
tures by minimizing the harmonic energy iteratively but
still computationally expensive.

In this paper, we first apply the so-called least square
conformal mapping (LSCM) method introduced in [7] to
flatten a patch of cortical surface, then generalize it to pro-
duce spherical conformal maps of the entire cortex while
minimizing metric distortion within the class of conformal
maps. We also make a comparison with FreeSurfer [4] and
CARET [3] about performance and distortion.

II. DISCRETE CONFORMAL MAPPING

A conformal mapping of a Riemannian surface to an-
other one is a continuous one-to-one function that pre-
serves all angle measures locally, i.e., locally isotropic.

II-A. Planar conformal map using LSCM

The least square conformal mapping is a planar quasi-
conformal parameterization method based on a least-square
approximation of the Cauchy-Reimann equation. Here we
give a brief description, see [7] for details.

Let � represent a simply-connected triangulated surface
of topological disc�
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where �������� is a set of � vertices with � � � and � is
a set of � triangles consisting of triples of vertices. We
assume that � is consistently oriented, then each triangle
of � has a uniquely defined normal; Furthermore, each

770-7803-8388-5/04/$20.00  ©2004 IEEE



triangle can be imposed a local orthonormal basis ��� ��
with the normal along the �-axis.

Now we consider a smooth mapping � from � to �� .
When restricting � on one of the triangles of � , say � ,
according to the above assumptions, we could write � in
the following form:

��� � ��� ��� ��� 	��

i.e., 
�� � ��� � � � �	. The Cauchy-Riemann equation
says that � is conformal on � if and only if the following
equality

��

��
� �

��

��
� � (1)

holds true on the whole � . Clearly, this conformal con-
dition generally cannot be strictly satisfied on the whole
triangulated surface �, so the minimization of the violation
of this condition was suggested in [7] to construct the
quasi-conformal map in the least square sense:
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If we suppose the mapping � is linear on each triangle
� , then we know that ��
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��
is a constant complex

number on � , consequently,
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where ��� � denotes the area of the triangle � . Further-
more, suppose that �� � ����	� � ����� for � � �� 	 	 	 � �,
then 
��� can be written in the quadratic form such as


��� � �
����� (4)

where � � ������� 	 	 	 ���� and � is a sparse � 
 �
complex matrix.

To make the minimization problem (2) has a unique and
non-trivial solution, some of the ���� must be pre-decided.
Let us re-arrange the vector � such that � � ��� ��	�
where �� consists of ��� free coordinates and �	 consists
of � pinned coordinates. Then the equation (4) can be
rewritten as


��� � ������ ��	�	��
� (5)

where � � ��� ��	� such that �� is a �
����� matrix
and �� is a � 
 � matrix. The minimization problem
of lesat square type (5) can be efficiently solved using
Conjugate Gradient Method.

It has been shown that the minimization problem has a
unique solution when � � � and the solution is invariant by
a similarity transformation in the mapping space. In order
to obtain the best conformality of the planar map, � should
be set to �. In our numerical experiments, the two vertices
maximizing the length of the shorted path between them
were pinned following the suggestion in [7].

II-B. Some measures of distortion

Since our final goal is to analyze the brain imaging data
using cortical surface falttening as a tool, we have to take
care of the quality of the resulting flat maps. Consequently,
we need a uniform way to measure the distortion between
the original cortical surface and the corresponding flat map.
It is very important that these measures should be invariant
under the similarity transformations.

The angular distortion is defined in the following:
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(6)
where ���� and ����� denote the angles ������� and
���������������� respectively. Although a conformal
mapping from our piecewise flat surface to a planar region
in fact preserves the “market share” of angles at vertices
[6], our definition for angular distortion is still valid since
the cortical surface is almost flat very locally.

Before defining the metric distortion, we must deal with
the computation of geodesic distances on the triangulated
cortical surface �. For each vertex, we label each of its
nearest neighbors as a 1-neighbor, then we label each
neighbor of a 1-neighbor that is not already labeled as a 2-
neighbor. Repeat this process, we could define �-neighbors
for each vertex. Denote by �������� and �� ������� the
geodesic distances between the vertex �� and �� on � and
its flat map ���� respectively. There are many practical
algorithms to compute ��������, we take the one proposed
in [4], which employs the Dijkstra Algorithm and requires
dynamic programming due to the memory restriction.

Then, the metric distortion is defined in the following:
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where ���� denotes the set of vertices which are pre-
defined neighbors of vertex �, ��� and ���� are normalized
geodesic distances between �� and �� by the sum of length
of all edges on � and its flat map ���� respectively to
avoid similarity transformations influence.

II-C. Spherical conformal map

In the former Section II-A, the LSCM approach for
flattening a surface of topological disc on a planar region
has been discussed, we are now left with another problem:
how to produce its discrete spherical conformal if the
triangulated surface � is a topological sphere?

Our spherical conformal mapping � from � to 
�

proceeds via the map for discs using a trick. First, an
arbitrary vertex �

� choosen from ����
�
��� and all edges
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containing it are removed from the input triangulated mesh
�, clearly, the pruned mesh �� becomes a topological
disc. Then we generate the conformal planar map � � of
the �� using the LSCM approach. Finally, the map � � is
stereographically projected to the unit sphere 
� while ��

is mapped to the “north pole” of 
�; i.e., � � � ��������,

���� �

�
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��
��� ������ otherwise�

where � is the stereographic projection. While such a
process does give us a spherical conformal map of �, the
spherical conformal maps of � are not unique since the
sphere 
� has a rich group of automorphisms, i.e., one-to-
one conformal maps from 
� to itself. The automorphism
group of 
�, ����
�� is the group of all Mobius transfor-
mations of 
�, i.e.,

����
�� � �� � � � � �
�� � �

�� � �
� �� �� �� � � � � ����� �� ���

Since the above process also may produce a highly
distorted spherical map, our idea here is to normalize the
map � by an automorphism � � ����
�� to minimize the
metric distortion defined in (7), i.e., we need to solve the
following minimization problem:

�	

��������
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������� (8)

This a very small-scale nonlinear optimization problem,
and we also want to mention several points:

	 If we fix ������ � ��� �� �� and get rid of the rotation
influence, then � could be simplified to: ���� � ����
where � � �, � � � . Then it is only a three-parameter
minimization problem.

	 No derivative information available since it is very
complicated to compute. Powell Method can be used
to solve this minimization problem. Some global
searching methods may produce better results.

	 Since our conformal maps preserve angles locally, it
is very reasonable to use only 1-neighbor to define
���� in ���� that will great reduce the computation
time and not affect the resulting map much.

III. CORTICAL FLAT MAPS

We illustrate our method by flattening a human cerebel-
lar cortex and a cerebral cortex and comparing with the
popular flattening softwares FreeSurfer and CARET.

III-A. Cerebellar cortex

We first chose to flatten a cerebellum which was ex-
tracted from a high-resolution T1-weighted MRI volume
in a consistent manner across subjects. Cortical regions
defined by different lobes and fissures were colored for
identification purposes. The parcellated surface consistsis

of 56,676 triangles and 28,340 vertices and is equivalent to
a topological sphere, see Fig. 1-A. As discussed in Section
II-C, for each vertex ��, ���� was set to be all its 1-
neighbors during the minization process (8). The spherical
conformal map of the entire cerebellar cortex were then
created using our method and shown in Fig. 1-B.

To be flattened in a planar region, the cortical surface
must be a topological disc. The lobe IV and V patch (Fig.1-
C) was cut off from the cerebellar cortex and then its planar
conformal map was produced with only two vertices pre-
pinned (Fig.1-D). This patch has 7,482 triangles and 3,903
vertices with 322 vertices on the boundary. It is easy to find
that the shape of the patch seems to be well-preserved. We
also would like to point out that the patch size in general
should not be too large in order to obtain planar map with
better metric distortion; otherwise, artificial cuts should be
made for the patch.

In addition, we pre-decided a planar region, in particular,
we chose an elipse such as � � ���� 	� � �� � �� �
	����
� � �� and fixed a homeomorphism � � �� � ��
using the following procedure: The boundary vertices of
����, were positioned on the boundary of � such that the
sides subtend angles basically propositional to the length of
the boundary edges of � joining the corresponding corners.
Then we flattened the lobe IV and V patch in the region
� (Fig.1-E). Of course, some conformality will be lost,
but we get the control of the shape. The CPU time and
measures of distortion for the above flat maps are reported
in Table I. Note that the metric distortion is computed by
setting ���� to be all neighbors up to the 5th level.

III-B. Cerebral cortex

The parcellated surface of left cerebral hemisphere has
totally 383,444 triangles and 191,724 vertices, see Fig.
2 (left) for the colored lobes map. The corresponding
spherical conformal map is shown in the Fig. 2 (right). The
occipital lobe patch (Fig.3-A) was cut off from the cerebral
cortex which is a topological disc, having 11,670 triangles
and 5,918 vertices with 290 vertices on the boundary. Like
before, we first flattened the occipital lobe patch with only
two vertices pinned on a plane (Fig.3-B), and then did it
on a pre-defined planar region (Fig.3-C), in particular, the
unit circle � � ���� 	� � ���	� � ��. The CPU time and
measures of distortion are reported in Table I.

III-C. Comparisons with other approaches

FreeSurfer and CARET are two commonly used soft-
wares for flattening cortical surfaces at present. In order
to evaluate the quality and performance of our quasi-
conformal flat maps, we also flattened the above cerebellar
and cerebral cortices using FreeSurfer and CARET. The
computational results were reported in Table II.
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Fig. 1. A. Parcellated surface of the human cerebellum;
B. Spherical conformal map of A; C. Cortical patch of
cerebellar Lobes IV and V; D. Planar conformal map of C
when two vertices are fixed; E. Planar conformal map of
C when all boundary vertices are pre-defined on ellipse � .

Fig. 2. Left. Parcellated surface of the left cerebral
hemisphere; Right. Spherical conformal map of the left
hemispheral cortex.

Fig. 3. A. Occipital lobe patch (pink), the occipital pole is
indicated by a black dot; B. Planar conformal map of A
when two vertices are fixed; C. Planar conformal map of
A when all boundary vertices are pre-defined on disc �.

IV. DISCUSSION AND CONCLUSION

Our discrete conformal method can be applied to either
a user-defined patches or to the entire cortical surface
and it shows that angular information is truely preserved

Cerebellar Cortex
Flat Maps A B C

CPU Time (sec.) 56.9 7.9 2.7
Angular Distortion 1.89Æ 1.01Æ 22.20Æ

Metric Distortion 42.89% 45.56% 33.64%
Cerebral Cortex

Flat Maps A B C
CPU Time (sec.) 779.6 20.7 16.3

Angular Distortion 4.46Æ 2.02Æ 10.71Æ

Metric Distortion 40.09% 38.76% 27.50%

Table I. CPU time and angular and metric distortion
produced by the LSCM method. A. spherical map of
the cerebellar cortex or the cortex of the left cerebral
hemisphere; B. planar map of a cortical patch when two
vertices are fixed; C. planar map of the same patch when
all boundary vertices are pre-defined.

Cerebellar Cortex Cerebral Cortex
Methods FreeSurfer CARET FreeSurfer CARET

CPU Time (hr.) 0.5 2 10 -
Angular Distortion 23.34Æ 21.22Æ 18.70Æ -
Metric Distortion 32.47% 31.06% 33.50% -

Table II. CPU time and angular and metric distortion of
spherical maps produced by CARET and FreeSurfer.

while metric distortion is minimized. Metric distortion is
similar to that produced by FreeSurfer and CARET, but
computation time is greatly reduced relative to both.
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