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Abstract
We propose a level set based deformable model for the segmentation of multiple objects from 3D
medical images using shape prior constraints. As an extension to the level set distribution model of
object shape presented in [1][2][3], this paper evaluates the performance of the level set
representation of the object shape by comparing it with the point distribution model(PDM)[4] using
the Chi-square test. We define a Maximum A Posteriori(MAP) estimation model using level set based
prior information to realize the segmentation of the multiple objects. To achieve this, only one level
set function is employed as the representation of the multiple objects of interest within the image.
We then define the probability distribution over the variations of objects contained in a set of training
images. We found the algorithm to be computationally efficent, robust to noise, able to handle
multidimensional data, and avoids the need for explicit point correspondences during the training
phase. Results and validation from various experiments on 2D/3D medical images are demonstrated.

1. INTRODUCTION
Segmenting the structures or objects in an image is of great importance in a variety of
applications including medical image processing, computer vision and pattern recognition.
Image gray level based methods often face difficult challenges such as poor image contrast,
noise, and missing or diffuse boundaries. Prior model based algorithms can often solve this
problem. We present such a model in this paper.

Our work shares the common observation that prior information about the expected shape can
significantly aid in image segmentation as well as to reduce the complexity of the segmentation
process. Cootes et al. [4] find corresponding points across a set of training images and construct
a statistical model of shape variation from the point positions. Leventon et al. [1] incorporate
shape information into an active contour evolution process. Tsai et al. [2] use mutual
information to segment multiple objects simultaneously. Also in our previous work[3], we
propose a neighbor-constrained probabilistic estimation framework for the segmentation of
multiple objects from 3D medical images. In this paper, we also employ a level set
representation for deformable objects and level set distribution models of object shapes.

Our approach to multiple objects segmentation is based on a MAP estimation framework using
level set based prior information of the objects in the image. We evaluate this level set
distribution model by comparing it with the traditional point distribution model[4] using the
Chi-square test. A single level set function is used to represent multiple objects of interest. We
then define the probability distribution over the variations of objects contained in a set of
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training images. By estimating the MAP shapes of the objects using this shape-based
deformable model, multiple objects can be segmented simultaneously.

2. PROBABILITY DISTRIBUTION ON SHAPES
2.1. Level Set Distribution Models(LSDM)

Consider a set of n training images {I1, I2, …, In} with a shape of interest in each image, for
example the left ventricle of the heart as seen in Fig. 1. In order to compare the structures from
different training images, the images must be aligned in the same way with respect to a set of
axes. We achieve this by rigidly aligning the training images so that they match as close as
possible. To model the object shape, we choose a level set representation of the shape over the
training set[1][2][3]. The surfaces of the structure in the training set are embedded as the zero
level set of n separate higher dimensional level sets Ψ with negative distances inside and
positive distances outside the object. The training set, τ, consists of a set of level sets τ =
{Ψ1, Ψ2, …, Ψn}. Our goal is to build the shape model over this distribution of level set
functions.

The mean and variance of the level sets can be computed using Principal Component Analysis

(PCA).[4] The mean  is subtracted from each Ψi to create the deviation from the
mean. Each such deviation dΨi is placed as a column vector in a Nd ×n dimensional matrix
Q.(Where d is the number of dimensions,Nd is the number of samples of each level set function.)
Using Singular Value Decomposition(SVD), Q = UΣVT. U is a matrix whose column vectors
represent the set of orthogonal modes of level set variation and Σ is a diagonal matrix of
corresponding singular values. An estimate of the level set Ψ can be approximated by k
principal components in a k dimensional vector of coefficients, α[4]: . Thus, an
estimate of the shape can be approximated by the zero level set of the estimated level set, i.e.,

.

Under the assumption of a Gaussian distribution of level set represented by α, we can compute
the probability of a level set corresponding to a certain shape:

(1)

By using PCA of the level sets of the left ventricles in Fig. 1, we can build a model of the shape
of left ventricles. Fig. 2 left illustrates zero level sets corresponding to the mean and three
primary modes of variance of the distribution of the level set of the left ventricle. Note that the
zero level sets of the mean level set and primary modes appear to be reasonable representative
shapes of the class of object being learned.

2.2. Evaluation of LSDMs
The LSDM presented above can be used as an approximation of the distribution of the object
shape. Since the level set function is a nonlinear function of the corresponding zero level set
(i.e. the surface of the object), it is very difficult to theoretically analyze the performance of
the LSDM as an approximation of the shape model. A practical way to evaluate it is to compare
the LSDM with the PDM[4].

In PDM, each shape is represented by a set of points on the boundary. The labelling of the
points is important. Each point represents a particular part of the object boundary, so it must
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be located in the same way on each of the training images, which is particularly difficult for
3D shapes.

Let Xi = (xi1, yi1, xi2, yi2, …, xiL, yiL)T be a vector describing the set of L points of the ith shape
in the set. (xij, yij) is the jth point of the ith shape. Table 1 shows the PCA processes of getting
the LSDM and PDM over a set of n aligned training images.

Fig. 2 right shows the three PDM-based primary modes of variance of the left ventricle using
the same training set as in Fig. 1. Compared to the PDM, the zero level set tends to have a
smoother boundary over the distribution. The two models are quite similar in describing the
main variations of the shape.

We then estimate a number of test left ventricles using LSDM and PDM as shown in Table 1,
the 6th row. Fig. 3 shows the two estimations of the left ventricles(with 5 primary modes). Most
parts of the two curves overlap well. To compare the two estimations, we compute the
undirected distance between the zero level set A(NA points) and the sample points B: H(A,B)

= max(h(A,B), h(B,A)), . The distances of the estimations for
the 5 cases in Fig. 3 are(unit:pixel): 2.1, 1.8, 1.3, 0.9, and 0.7. Virtually all the points in the
zero level set lie within one or two pixels of the PDM estimation.

Next, we evaluate the two distributions by doing a Chi-square test, again using the left ventricle
as the example. Since the PDM is built in the sample point vector space, while the LSDM is
in the level set space, we need to convert the two distributions in the same space first in order
to do the comparison. We first randomly generate a set of samples {X1,X2, …, Xm,m = 105}
(each sample corresponds to a shape represented by a sample point vector) based on the PDM.
Each Xi can be embedded as the zero level set of a higher dimensional level set Yi, the projection
of Xi in the level set space. Then we compare the set of projections {Y1,Y2, …, Ym,m = 105}
with the LSDM shown in equation (1) using the Chi-square test, where we define the H0
hypothesis to be that the projections have the same distribution defined by the LSDM. Consider
the first 5 principal components in the LSDM, with 5 bins along each of the principal modes,
the Chi-square statistic is given by:

(2)

where the sum is over all the bins considered, Ob. is the observed frequency of Y s falling in
each bin, Ex. is the corresponding expected frequencies which can be calculated by integrating
the probability function in equation (1) over the bin. For our test(1024 degrees of freedom),
χ2 = 981, with a upper tail probability Pr(χ2 > 981) = 0.82. Therefore, there is a 0.82 probability
that it is wrong to rejectH0. Thus, the two distributions are statistically indistinguishable.

We can also use LSDM for multiple shapes in each training image, where the surfaces of the
shapes in each image can be embedded as the zero level set of one single level set Ψ Fig. 4
shows zero level set corresponding to the mean and three primary modes of variance of the
distribution of the level set of the 4 sub-cortical structures.

The level set representation of shape is an efficient way to formulate a distribution model for
both 2D and 3D shapes, and appears to be an accurate approximation to the corresponding
PDM. Moreover, it does not require explicit point correspondences(since the shape is
embedded in a level set).
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3. SEGMENTATION MODEL WITH MULTI-SHAPE PRIOR
3.1. MAP Framework

Consider an image I that has M shapes of interest: S1, S2,…,SM; a MAP framework can be used
to realize image segmentation combining shape prior information and image information[3]
(i = 1, 2, …,M):

(3)

p(I/S1, S2, …, SM) is the probability of producing an image I given S1, S2, …, SM. In 3D,
assuming gray level homogeneity within all the M objects, we use the following imaging model
[3]:

(4)

where Sall = {Si|i = 1, 2, …, M}, c1 and σ1 are the average and variance of I inside Sall, c2 and
σ2 are the average and variance of I outside Sall but also inside a certain domain Ω′ that contains
Sall.

p(S1, S2, …, SM) is the probability function of all the M objects, which can be approximated
by equation (1) using the LSDM as discussed in section 2, where the surfaces of the M shapes
in each training image can be embedded as the zero level set of one level set Ψ. In our active
contour model, we also add a general smoothness Gibbs prior[3] for the region boundaries

. where μ is a scalar factor. Thus, p(S1, S2, …, SM) can be approximated
by a product of the following probabilities:

(5)

Combining equations (1) and (3)–(5), we introduce the energy functional E defined by

(6)

The MAP estimation of the shapes in equation (3), , is also the minimizer
of the above energy functional E. This minimization problem can be formulated and solved
using the level set method and we can realize the segmentation of multiple objects
simultaneously.
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3.2. Level Set Formulation of the Model
In the level set method, Sall is the zero level set of a higher dimensional level set ψ corresponding
to the M objects being segmented: Sall = {(x, y, z)|ψ(x, y, z) = 0}. For the level set formulation
of our model, we replace Sall with ψ in (6) using regularized versions of the Heaviside function
H and the Dirac function δ, denoted by Hε and δε[5]:

where Ω denotes the image domain. G(·) is an operator to generate the vector representation
(as in section 2) of a matrix by column scanning. g(·) is the inverse operator of G(·).

, .

To compute the associated Euler-Lagrange equation for the unknown level set function ψ, we
keep c1 and c2 fixed, and minimize E with respect to ψ. Parameterizing the descent direction
by artificial time t ≥ 0, the evolution equation in ψ(t, x, y, z) is:

4. APPLICATIONS TO MEDICAL IMAGERY
We have used our model on various medical images, with multiple types of contours and
shapes. In Fig. 5, we show the segmentation of the left and right ventricles using our level set
prior model. The curves are able to converge on the desired boundaries even though some parts
of the boundaries are too blurred to be detected using only gray level information. In Fig. 6,
we show that our model can detect multiple objects of similar intensities and with blurred
boundaries. We also tested our method in 3D images. Fig. 7 shows the segmentation of the left
amygdala and hippocampus in a 3D MR brain image.

To validate the segmentation results, we compute the undirected distance (defined in Section
2.2) between the computed boundary and a manually traced boundary. For our experiments,
the mean distances show improvement in all these cases comparing with/without the level set
based prior: average left and right ventricles 1.6mm/5.8mm, subcortical structures 1.8mm/
9.2mm, amygdala and hippocampus 2.3mm/11.2mm. Virtually all the boundary points obtained
using our model lie within one or two voxels of the manual segmentation.

5. CONCLUSION
This work presents a level set based deformable model for the segmentation of multiple objects
from 3D medical images using shape prior constraints. We evaluate this level set distribution
model by comparing it with the traditional point distribution model. Our approach to multiple
objects segmentation is based on a MAP estimation framework using level set based prior
information of the objects in the image. Only one level set function is employed as the
representation of the multiple objects of interest within the image. We define the probability
distribution over the variations of objects contained in a set of training images. We found the
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algorithm to be computationally efficent, robust to noise, able to handle multidimensional data,
and avoids the need for point correspondences during the training phase.
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Fig. 1.
Outlines of left ventricle in 5 out of 16 MR training images.
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Fig. 2.
The 3 primary modes of variance of the left ventricle using LSDM(left columns) and PDM
(right columns).
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Fig. 3.
Level set(green) and point model(red) based estimations of the left ventricles.
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Fig. 4.
The three primary modes of variance of 4 sub-cortical structures using level set model.

Yang et al. Page 10

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2010 March 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
3 steps in the segmentation of 2 shapes in a 2D cardiac MR image. The training set consists of
16 images.
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Fig. 6.
Detection of 4 sub-cortical structures(heads of the caudate nucleus and putamina) in a MR
brain image. The training set consists of 12 images.
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Fig. 7.
Initial, middle, and final steps in the segmentation of 2 shapes in a brain MRI. Three orthogonal
slices and the 3D surfaces are shown for each step. The training set consists of 12 MR images.
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Table 1

LSDM and PDM

LSDM PDM

Shape Representation {Ψ1,Ψ2, …,Ψn} Ψi : Nd elements {X1,X2, …,Xn} Xi : dL elements

Mean Shape Ψ
‒

= 1
n ∑i=1

n Ψi X
‒

= 1
n ∑i=1

n X i

Mean Offset Matrix Q  Ψ Q X

SVD QΨ = UΨ∑ΨVΨ
T QX = UX∑X VX

T

Parametric Model Ψ
~
= Ψ
‒
+ UΨ,kαΨ X

~
= X
‒
+ UX ,kαX

Probability of Shape p(αΨ) ~ Gauss. p(αX) ~ Gauss.
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