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ABSTRACT 

 
This paper presents an image processing framework for 
assessing molecular activity changes from fluorescent 
data in time-dependent geometries. The aim of our work 
is to provide the necessary tools in order to facilitate 
molecular imaging studies of small animals, where the 
basic problem is the time dependent geometry due to 
different measurement sessions or animal movement. 
Synthetic, fluorescence imaging data of molecular activity 
inside a mouse are produced numerically by moving the 
location of the fluorophore distribution and then randomly 
and non-linearly transforming the image. A method for 
aligning the temporal data and improving the accuracy of 
monitoring fluorophore distribution is presented. 

 

1. INTRODUCTION 
 
Modern advances in molecular imaging have 
demonstrated the need for interdisciplinary collaboration 
so that the full potential of this field is exploited. This 
paper aims to provide a framework for the computer 
analysis of temporal molecular imaging data of small 
animals. Our work is centered on fluorescent data 
measurements, but the methods presented may as well be 
applied to any other imaging modality such as MRI, PET, 
SPECT, and CT. 

Lately, there have been great advances in the use of 
light to probe molecular function (see [1] for a review on 
the subject). This is mainly due to the large number of 
specific optical probes and their relatively simple 
transfection and due to the possibility of engineering 
transgenics. To date, two main techniques have been used 
for imaging fluorescent probes, Fluorescence Reflectance 
Imaging (FRI) [2, 3], which consists of imaging the 
fluorescence (or luminescence) map emitted from the 
animal, and Fluorescence-mediated Molecular 

Tomography (FMT) [4], which produces 3D spatial maps 
of fluorophore concentration. Lately, a novel geometry 
for FMT has been developed, quite similar to that 
traditionally used for FRI [5]. This geometry consists of 
illuminating the specimen either from the back 
(transmission measurements) or from the front (reflection 
measurements) and taking a flat 2D image of the emitted 
intensity. 

One of the main advantages of the optical method is 
the fact that it is non-invasive. This opens the possibility 
of studying disease development, gene expression or cell 
trafficking over a period of time, on the same subject. 
However, when performing such experiments, the subject 
is never placed in the exact same position, making 
extremely difficult the extraction of accurate values of 
position and/or full width half maximum (FWHM) of the 
emitted light. In terms of FMT, this means that the 
reconstructed images are difficult to compare, due to this 
position uncertainty. To overcome this problem, we 
present a method that can account for geometrical 
distortions and compression differences, transforming the 
images measured at different stages so that they can be 
quantitatively compared. The proposed method has the 
potential to be useful in a large variety of applications that 
deal with growth factor and/or kinetics, such as cell 
trafficking and cancer studies. 

This paper is structured as follows: In section 2 we 
describe the simulation data-set and the proposed method 
for aligning the images, while in section 3 we present a set 
of results before concluding with a discussion in section 
4. 
 

2. METHODS 
 
In order to align temporal image data, one can experiment 
with a plethora of available methods used in medical 
imaging. However, it has been proven that in diagnostic 
imaging it is not feasible to develop a generic algorithm 
for aligning temporal data. The main reasons are the time 



dependent geometry of the object we want to image and 
the physics of the imaging method used. Therefore, 
temporal image variations of a certain object include rigid 
or non-rigid displacements due to e.g. changes in 
compression and placement of the object as well as 
intensity transformations caused by factors such as 
variability in imaging parameters.  

In this specific application we simulate time-
dependent positioning and exerted compression on the 
subject (mouse), that lead to both rigid and non-rigid 
changes in the shape of the imaged subject. In order to 
simulate the fluorescence map emitted from the subject 
we have made use of the diffusion approximation, 
modeling the mouse as an infinite slab. This approach has 
been used for example in FMT studies yielding accurate 
results (see [5]). Since we are interested in studying the 
positional error introduced when considering time-
dependent situations, we have considered the case of a 
constant distribution of fluorophores that moves along the 
same XY plane (i.e. parallel to the detection plane) at a 
distance of 0.75cm from the surface. Therefore, we have 
assumed that the intensity profile does not change, i.e we 
have not modeled inhomogeneities present in a realistic 
situation.  

By observing such data, we have concluded that 
intensity-based alignment techniques such as optical flow 
can’t guarantee a good result since the displacement of 
the mouse in the image as well as the change in 
compression can be significant. For this reason, we used a 
variation of a method that has been applied to temporal 
mammogram registration, based on thin-plate spline 
interpolation [6]. The analogy of this problem to the 
mammogram registration one is quite obvious; in both 
cases the image appearance of an object is distorted over 
time due to changes in compression. However, in this 
application the intensity profile is assumed constant over 
time (while changes in X-ray imaging parameters lead to 
temporal intensity variability). The method used is 
described in the following sub-sections. 
 
2.1. Object-specific landmark localization 
 
The boundary of the mouse image is a very useful feature 
since it provides information about the difference in 
compression and placement of the object between 
sessions. Moreover, since the shape of the mouse does not 
change significantly, landmarks can be defined in each 
pair of temporal images. This is done by using similar 
concepts with the work described in [6]. First, we use 
mathematical morphology to obtain an 8-connected 
outline. Then, using triplets of sampled outline points, we 
fit a parametric spline and calculate the curvature at each 
point according to equation (1): 
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where xt, xtt and yt, ytt are the first and second derivatives 
of x(t), y(t) with respect to t (the curvilinear parameter t 
describes the outline).  
 

  
 

 
 

Figure 1. Transformation-invariant landmark detection 
based on the curvature profiles (shown on the left) 

 
As it is shown in Figure 1, it is possible to detect 

landmarks on the basis of analyzing the curvature profile. 
The top right image shows the mouse in its original 
position while the bottom right one is the result of 
applying a random non-rigid registration. By comparing 
the curvature profiles (shown on the left) we can see that 
the maximum curvature points along the boundaries are 
transformation invariant. These points can be detected by 
thresholding the curvature profiles and then using fuzzy 
clustering to group salient curvature points. The points 
displayed in Figure 1 (right) are the maximum curvature 
points of each cluster. It is also noticeable that the 
curvature profiles are consistent and the small shift is due 
to the random selection of the starting point along the 
outline. In this work, we only considered the “positive” 
curvature profile (moving along the boundary in a 
clockwise direction, the tangent vector at each positive 



curvature segment, points outside the object). By 
considering the “negative” value curvature profile, 
additional maximum curvature points could be detected. 

We have experimented with a large variety of 
possible transformations and have concluded that, in 
almost all realistic transformation scenarios, the detection 
of these points is consistent. These points can be the basis 
of a semi-automatic algorithm for landmark definition. It 
is important to mention that the robust detection of 
landmarks is crucial for any feature-based image 
alignment method. The results indicate that it is possible 
to further develop this method into a fully automatic 
system for image alignment and comparison. Once point 
correspondences are defined, each pair of images is 
registered as is explained in the next section. 
 
2.2 Thin-plate spline interpolation 
 
The basic method that we use for image registration is 
thin-plate spline interpolation to align temporal 
mammograms using a set of landmarks from the breast 
boundary. The calculated interpolating function f(x, y) for 
the vertical or the horizontal direction is smooth and 
deforms the image in such a way that the bending energy 
is minimised, while the landmarks are matched. The 
bending energy is given by (2): 
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  (2) 
The implementation details of the method are 

explained in [7]. This method is efficient at recovering 
local deformations but special care is needed in the 
selection of the landmarks. Landmark localization can be 
based on the curvature analysis described in the above 
section. To improve registration accuracy, one can sample 
between pairs of detected transformation-invariant points. 
In this work, no additional landmarks were used. After the 
transformation is computed, the template image can be 
aligned to the target one. The results are presented in the 
next section. 
 

3. RESULTS 
 
Figure 2 shows the application of the proposed non-rigid 
alignment method in order to correct the time dependent 
geometry of the mouse simulated here by applying a 
random non-rigid transformation. 

  
 

  
Figure 2. Transformation of the template image (top left) 
to the target (top right). The transformed image (bottom 

left) is close to the target, as is verified by the error image 
(bottom right). 

 

 
Figure 3. The validation data consists of 7 identical 
images of the mouse except for the distribution of 

fluorophores that is simulated to propagate inside the 
mouse within a plane parallel to the detection plane at 

0.75 cm from the surface. 
 

Figure 3 shows the ground truth data used for a 
validation experiment. Using only one image of the mouse 
we simulate the propagation of a constant distribution of 
fluorophores in 7 different instances. Notice that in Figure 
3 the geometry of the mouse is unchanged and each 
location of the fluorophores is used as the ground truth. 
Then, a random transformation is applied to each image 
(2-7) in order to simulate the random changes in 
positioning and compression. This way, we want to 
validate the accuracy of our method in recovering these 
random transformations and locating the site of the 
fluorophores (center of distribution) in each simulation 
(2-7). This is further explained if Figure 4, where a 
random transformation is applied to image 7 of Figure 3. 
The simulated image (7S) is then aligned with image 1 of 
Figure 3, resulting in the “corrected” image 7C. 

1 2 3 4 5 6 7 

TRANSFORMED 

TARGET TEMPLATE 



 
Figure 4. The simulated image 7S is aligned with image 1 
of the “ground truth” dataset (see Fig. 3-1) resulting in the 

corrected image 7C. The last image on the right is the 
computed transformation grid. 

 
This process is repeated in images 2-6. For validating 

the accuracy of the method, the location of the center of 
mass of the fluorophore distribution of the simulated and 
corrected data-set is compared to the “ground truth” 
values. The results are plotted in Figure 5. The left graph 
is the distance of each estimated fluorophore position in 
the simulated and corrected images from the 
corresponding “ground truth” position. The right graph 
shows the distance of all fluorophore center points from 
the “ground truth” origin point (fluorophore position “1” 
in Figure 3). Specifically, we plot the “ground truth” 
trajectory of the fluorophore center and compare it to the 
fluorophore trajectories of the simulated and corrected 
data-sets. It is obvious that the proposed method can 
recover most of the image distortions caused by 
differences in compression and placement of the mouse. 
 

4. DISCUSSION 
 
Figure 5 clearly demonstrates that the larger the initial 
displacement of the region of interest the better is the 
improvement in localization. The remaining errors are due 
to landmark localization errors, as well as to a few non 
realistic transformations produced by randomly distorting 
the image using commercial image analysis software.  

In conclusion, the method presented here may be 
used in all those instances where flat 2D images are used, 
such as in Fluorescence Reflectance Imaging and 
Bioluminescence Imaging and in most PET and SPECT 
studies. Moreover, its potential application in full 3D 
imaging is obvious. We believe that the presented method 
has the potential to play an important role in a large 
variety of applications that need several imaging sessions, 
such as cell trafficking, tumor growth factor, and others, 
considerably improving the resolution and quantization. 
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Figure 5. The left graph is a plot of the error distances in 
pixels (pixel size is 0.037cm) of the center of mass of the 
fluorophore regions in the simulated and corrected images 

(1-7), from the ground truth locations in Figure 3. The 
right graph shows the “real” trajectory of the fluorophores 
compared to the trajectories calculated from the simulated 

and corrected datasets.  
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