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ABSTRACT 

 
The surface Laplacian is known to be a theoretical reliable 
approximation of the cortical activity. Unfortunately, because of 
its high pass character and the relative low density of the EEG 
caps, the estimation of the Laplacian itself tends to be very 
sensitive to noise. 

We introduce a method based on vector field regularization 
through diffusion for denoising the Laplacian data and thus obtain 
robust estimation. We use a forward-backward diffusion aiming 
for source energy minimization while preserving contrasts 
between active and non-active regions. This technique uses 
headcap geometry specific differential operators to counter the 
low sensor density. The comparison with classical denoising 
schemes clearly demonstrates the advantages of our method. 

We also propose an algorithm based on the Gauss-
Ostrogradsky theorem for estimation of the Laplacian on missing 
(bad) electrodes, which can be combined with the regularization 
technique in order to provide a joint validation framework. 

 

1. INTRODUCTION 
 
In the context of Brain Machine Interface projects, researchers 
focus on the extraction of relevant features for mental states 
discrimination, in order to allow a generic classifier to issue a 
command to the machine. A special class of feature extraction 
deals with the identification of active brain areas, either through 
the EEG inverse problem solution, or through cortical imaging. 

In the EEG inverse problem one attempts to recover the 
electrical sources which are at the origin of the measured EEG 
data, either by performing dipole localization (usually nonlinear 
search for the best fit), or distributed linear inversion, that is 
discretizing the whole solution space (gray matter volume) and 
estimating the source amplitudes in each solution point. 

Cortical imaging does not attempt to resolve this highly ill-
posed problem, but merely to identify the active areas of the 
cortex through estimation of the potential distribution on the 
cortical surface. It can be proven that the surface Laplacian of the 
EEG data can be used as a reliable approximation of the cortex 
potential distribution. 

Known techniques for Laplacian estimation involve the use 
of analytical derivation via interpolating approximations (e.g. 
spline) of the potential data [2], [3]. However these approaches 
do not only fit to the valuable potential data, but also to noise. 

Combined with the known high-pass character of the Laplacian 
filter, even with low variance noise these methods can generate 
unstable results. This paper focuses on robust estimation of the 
Laplacian EEG from data collected on a typical electrode cap. 
 

2. PHYSICAL CONSIDERATIONS 
 
The measured EEG potential is a sum of contributions from all 
the active sources in the brain. The deep sources tend to 
contribute more uniformly to all electrodes, as the distances to 
each electrode are on the same magnitude order. On the other 
hand, cortical sources tend to influence only the closest 
electrodes. In terms of spatial frequencies, the deep sources will 
produce the low band frequencies, while the cortical sources 
count for the high band frequencies. 

If we want to study only the cortical sources we need to 
apply some kind of high-pass spatial filtering. Following the 
works from [1], [2] it was proven that the Laplacian filter is a 
legitimate filter for cortical imaging. 

Indeed, from the Laplace equation: 
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Equation 1 is derived using the standard relationships: 
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Splitting the current into the surface orthogonal and parallel 
components, one obtains: 
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The surface Laplacian is proportional to the divergence 
(derivative with respect to the orthogonal axis) of the surface 
perpendicular electric current. Neglecting the outgoing electric 
current (the air conductivity is practically null), and the scalp 
potential with respect to the cortical potential (due to huge 
attenuation in the skull), we derive : 
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The Laplacian filter therefore produces an image 
proportional to the cortical potentials. To our knowledge the 
previous relationship has been first presented in [1]. 



3. GEOMETRY AND DIFFERENTIAL OPERATORS 
 
Unfortunately the Laplacian computation involves the use of 
differential operators. Since in general the EEG standard caps are 
not regularly spaced, this has pushed researchers to avoid 
differential operators for direct Laplacian estimation, in favor of 
analytical derivation from spline interpolators. We present here a 
method for determining specific differential operators for any 
irregular cap, provided that it is dense enough (roughly more than 
100 electrodes). 

We use the concept of neighborhood (Figure 1), i.e. for 
each electrode we search for its nearest neighbors (either 
manually or automatically). 

 

Figure 1. Typical electrode neighborhood 

We are looking for the derivatives of a function on a surface. 
Assuming that the surface is locally spherical, we will look for the 
derivatives with respect to the orthogonal unitary vectors which 
form the tangent plane to this surface at the position of the 
considered electrode. We need to evaluate the partial derivatives 
of a function f such as to respect as much as possible the 
Equation 4, for every neighboring electrode eli. 
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el0 denotes the central electrode and the orthogonal system 
formed by the unitary vectors (x1, x2) is supposedly originated, 
without any loss of generality, in the central electrode. This is 
clearly an overdetermined problem that can be solved using the 
classical least squares solution (Equation 5). 
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and t stands for transposed. 
The kernel of this partial derivative operator is independent 

of the values of the function, and it is exactly the gradient 
operator. The divergence operator can be obtained by applying 
this kernel twice, once for each component of the vector field (in 
the same local coordinate system) and retaining only the 
necessary terms (diagonal). The determination of the Laplacian 
operator is then straightforward. 

Since the operators are local, they need to be rotated for 
coherence on the surface , for instance they can be aligned with 
the local system of the vertex electrode. Figure 2 shows a typical 
image of the gradient (left and middle image) and the Laplacian 
(right image) operators on a spherical head shape with a 123 
electrode cap. 

       
Figure 2. Gradient and Laplacian operators 

 

Positive values are mapped continuously to white-gray and 
negative values to black-gray. The operators show standard 
characteristics: ortoghonality of the gradient operators and 
isotropy of the Laplacian. The operators are aligned with the 
coordinate system of the vertex electrode. 

The same kind of patterns are reproduced for all electrodes, 
except for the border ones, where it is not possible to obtain a 
reliable Laplacian estimate (second order derivative on a border), 
but where it is nevertheless possible to obtain a correct 
approximation of the gradients. 
 

4. LAPLACIAN DRIVEN DIFFUSION 
REGULARIZATION 

 
Applying the Laplacian operator previously defined is the first 
step in our search for a robust Laplacian estimator. The least 
squares solution is the Maximum Likelihood estimator for 
Gaussian noise, so from its very conception our operator has, up 
to some degree, embedded noise immunity. Experiences however 
show that the noise sensitivity of the Laplacian surpasses its 
immunity. Denoising the Laplacian is thus required. 

The natural way to do it would be directly denoising the raw 
Laplacian (upper path in Figure 3). We believe this to be 
unsatisfactory, therefore we will work instead on the surface 
gradient field using Laplacian priors, which implies joint 
regularization of the gradient and of the Laplacian (lower path of 
in Figure 3). Furthermore, this allows us to embed physical 
knowledge into the basis of our technique. 

 
 
 
 
 
 
 
 
 

Figure 3. Denoising schemes 

The surface gradient field is nothing else than the electric 
field intensity, or equivalently the current flow on the surface. 
Rigorously, the sources of this flow are expressed by the surface 
Laplacian, since its divergence is proportional to it (Equation 2). 
We start then the construction of our algorithm by stating the 
source energy minimization principle in Equation 6. 
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In the same time we need to insure closeness to the original 
data 0j

r

. Using the Lagrangian multipliers method written in an 

energy form we obtain (Ω is the Lagrangian multiplier): 
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Since this type of approach tends to oversmooth and/or not 
sufficiently eliminate noise (the first term is bound to keep noise 
components and the second one to oversmooth), the solution is 
to smooth out noise and a posteriori restore and accentuate the 
boundaries of the vector field image. The process will thus be 
overall anisotropic, rendering an uniform field in the no or low 
source (Laplacian) regions, and suppressing noise without 
reducing source contrasts in active regions. 
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This type of anisotropic behavior perfectly fits diffusion 
regularization schemes, which have already been proven to yield 
excellent results with vector images [4], [5]. They are iterative 
gradient-descent-like methods based on the Euler-Lagrange 
minimum-effort (least-action) principle, which states that any 
physical system will follow a path such as to minimize the 
Lagrangian functional over time: 

 minimize ( ( ), ( ))
t

L x t x t dt∫ &  

Historically, in mechanics, the Lagrangian functional L 
stands for the energy of the system, x for its position, t for time, 
and the point above x for its time derivative, that is the speed. 
The equilibrium state of this system is indicated by: 
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This principle is usually applied in image processing by 
switching the time variable with the image coordinates and the 
Lagrangian with a functional of the form: 
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where I stands for the scalar image intensity values, α is a 
Lagrangian multiplier and Ψ a preferably convex continuous 
function. The equilibrium (and the descent direction) is given by: 
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For vector valued images, like the EEG gradient field, the 
Equation 10 cannot be applied directly. It would be possible to 
perform diffusion component-wise, but this would lead to 
uncoupling. Instead, we can couple the diffusion using an unified 
measure for the gradient norm, based on the tensor gradient. 
Using the notations of Equation 6 we will thus have : 
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The divergence is to be applied separately for each 
component. We still need to define a norm for the tensor gradient 
and to find the proper function Ψ . 

For natural images, and in order to preserve borders, this 
function is chosen such as that the behavior function FΨ  

(Equation 11), which dictates how the diffusion acts in the 
presence of gradients, is monotonically decreasing. The gradient 
norm is usually selected as a combination of the eigenvalues of 
the gradient tensor. We already have a proper and convenient 
norm definition, that is the absolute value of the gradient tensor 
trace. Indeed, in every cartesian system (x1, x2): 
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The conductivity can be regrouped with the Lagrangian 
multiplier and we naturally choose the Ψ function as the energy 
functional: 
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We have converted the minimization problem defined in 
Equation 7 into an uniform diffusion process, which indifferently 

affects low or high gradients. This is the first step of the iteration, 
the second one needing to restore and accentuate. 

This can be done by using backward diffusion on high 
gradient regions. Backward diffusion acts in the same way as 
forward diffusion, but simply switching the evolution direction, 
which enables it not to smooth out gradients, but, on a contrary, 
accentuate them. In the same time normal forward diffusion can 
be also applied on low gradient regions. This forces the choice of 
a combined forward-backward diffusion process second step, 
with behavior functions that should look roughly as in Figure 4, 
where the horizontal axis is the normalized Laplacian norm. 

 
Figure 4. Forward-Backward behavior functions 

In practice we use sigmoid shapes in the transition area and 
fixed values of 0 and 1 outside. The width of the transition should 
be small enough to ensure differentiation between active and 
non–active regions and large enough to avoid discontinuity. The 
backward function is the increasing one. 

The cut value γ , which fixes the border between active and 
non-active regions, is determined at each iteration using the 
Bienaymé-Tchebychev inequality, considering the noise n to be 
zero-mean, and that we want to insure a low probability P of 
noise appearance in the area to be restored: 
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The noise variance is estimated as a global mean of local 
variances. The ratio between the restoration power (backward 
diffusion) and the forward diffusion, β , is given by the ratio 
between the power of the Laplacian before diffusion and the 
power of the present estimate, in order to avoid divergence 
(backward diffusing implies instability risks). In summary: 

A few comments are necessary:  
� τ  is a step size, which should be linked with the 

geometry of the differential operators (see previous section). 
� 0Ω = , the closeness to the original data is insured by 

initialization and restoration 
� the stopping criterion is relative, which means that the 

iterations are stopped when the energy of the modifications is low 
when compared with the first iteration (typically 10%). 
� the divergence operations are performed line by line. 

� the Laplacian is easily computed as .s J∆ = ∇
ur
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  Begin the iterations 

• uniform diffusion (Equations 10, 11, 13), 0Ω =  
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• estimate γ , compute , B , F βΨ Ψ .  
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ur ur ur ur

 

  Repeat until convergence 



5. PERFORMANCE TESTS 
 
In order to evaluate the performance of the algorithm we have 
simulated a realistic setup. Inside a four-layer spherical head-
model we generated dipole sources at random positions and with 
random orientations. The source grid corresponding with the gray 
matter and the electrodes positions of a 123 electrode cap were 
obtained from the HUG (Hopital Universitaire de Geneve, 
courtesy of R.Grave de Peralta and S. Gonzalez). 

Using analytical expansions into Legendre polynomials we 
computed the ideal generated potentials and surface Laplacians 
directly from the source distribution. We added noise to the ideal 
potentials and performed direct estimation through the Laplacian 
operator, Laplacian driven diffusion regularization, classical 
filtering of the estimated Laplacian (median and Wiener filtering), 
and compared the results in terms of PSNR with the ideal surface 
Laplacians. Results shown in Figure 5 confirm the validity of our 
approach: 

 
 
 
 
 
 
 
 
 
 

Figure 5. Performance curves 

The randomization were carried out 10000 times for each 
SNR value (ranging from 0 to 40 dB and given with respect to 
the potential, where the noise was actually added), using three 
uniformly distributed sources (in space) with normal distributed 
amplitudes. Figure 5 shows the performances only for Gaussian 
noise, but the same type of curves ore observed for uniform and 
Laplacian noise. The 1 to 2 dB gain over any other method is 
mainly produced by the restoration procedure. Unfortunately the 
backward diffusion also had some unwanted influences, causing 
divergence (maximum number of iterations exceeded, 

10NbMax = ) in roughly 1% of the simulations. The parameters 
involved in the iterations were set to: 0.01τ = , 0.1P = . 

 
6. LAPLACIAN ESTIMATION ON MISSING (BAD) 

ELECTRODES AND JOINT VALIDATION 
 
Suppose that one of the electrodes is malfunctioning (for instance 
the middle electrode of Figure 1). If reliable estimates of the 
neighborhood gradient field are available, the exact Gauss-
Ostrogradsky theorem on a surface can be used to approximate 
Laplacian data on this electrode: 
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The above formula actually states that the integral of the field 
divergence on a surface s closed by a contour c equals the value 
of the outgoing flow. Because of our discrete electrode system 
we can only approximate : 
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The computations for the contour vector in
r

 and the contour 
length li for each electrode assume local constant curvature. 

Equation 16 provides us with a joint validation framework: 
indeed, if the differential operators and the regularization 
procedures are physically sound, we should be able to recover the 
missing Laplacian data. As shown in Figure 6, the comparison 
with full data confirms our expectations. 

 
 
 
 
 
 
 
 
 

Figure 6. Joint validation 

The left image in Figure 6 is the theoretical Laplacian. We 
have suppressed on purpose an electrode carrying important 
information from the potential data (hole in the middle image), 
regularized while completely ignoring it, and estimated the 
Laplacian on that electrode (right image). 
 

7. CONCLUSIONS 
 
We have presented a vector field approach for robust estimation 
of Laplacian data, leading to better discrimination between 
active/non-active regions, which should improve classification 
performance. We intend to pursue this approach and perform 
quantitative studies in a joint validation framework, using EEG 
data generated by Brain Machine Interface protocols. 

Another important issue needs to be discussed, the inherent 
spatial smoothing effect caused by the low density of the EEG 
grid. Indeed, our estimated Laplacians are only averages over the 
surface defined by the neighbors. This effect accounts for the 
relatively low maximum PSNR value obtained. It is our goal to 
tackle this problem and continue towards source identification 
both on the cortical surface and in the inner brain. 
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