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ABSTRACT

We combine a pen and pressure-sensitive tablet input device, and a

sketch-based user initialization process, with a general subdivision-

curve Snake to create an intuitive, fast, accurate, interactive model-

based segmentation method. Using the pen input device, the Snake

is quickly and precisely initialized with a series of sketch lines such

that it is extremely close to the position and shape of the target object

boundary, making the Snake’s task much simpler and hence more

likely to succeed in noisy images with minimal user editing. The

user may also use pen pressure levels to easily impart knowledge of

object edge strength to the model, and the low degree-of-freedom

subdivision curve Snake provides powerful control and editing ca-

pabilities. We apply our Snake to the segmentation of several 2D

medical images.

1. INTRODUCTION

Robust, fully automatic medical image segmentation systems have

proved extremely challenging to develop. Consequently, semiauto-

matic techniques, such as Snakes [1] and their variants have become

widely popular. Many improvements in the application of these

models to images have been proposed, especially models that mit-

igate the well-known initialization sensitivity problem, creating the

ability to perform “one-click” initialization and allowing some mod-

els to flow into complex shapes and change their connectivity[2, 3,

4, 5, 6]. These improvements have proved effective for a significant

set of segmentation tasks, especially involving very complex-shaped

objects or numerous small objects. However, these models tend to

fail in noisy images and require significant user intervention. Un-

fortunately, the mechanisms and formulations that enabled the sim-

ple initialization and complex-shape extraction were often achieved

at the expense of capabilities to perform interactive steering, high-

level control and editing, and the ability to impose global shape con-

straints. Over the past several years, we have been exploring an alter-

native research direction [7, 8] to complement the “flow”-type mod-

els and create tools for noisy medical images and image sequences.

In particular, our goal is to minimize the time and labor required to

interactively construct and initialize a Snake, provide powerful inter-

active steering and editing capabilities, while retaining the ability to

support high-level controllers and incorporate shape constraints.

In [9], Olabarriaga and Smeulders suggested several guiding de-

sign principles be followed to produce efficient interactive segmen-

tation methods that generate accurate and repeatable results: inte-

grating the computational and user interaction components into one

process, using pictorial input to the computational part, initializing

the segmentation method with key information which will lead the

method to an accurate result more quickly, allowing the user to con-

trol and steer the method throughout the whole process, allowing

the user to intuitively predict the impact of the interactions on the

segmentation result, providing visual feedback of the effect of the

interaction in real-time, emphasizing computation after each user in-

teraction for optimal repeatability, and adding intelligent behavior to

elevate the abstraction level of the interaction.

In this paper, we have attempted to adhere to these guiding prin-

ciples. We describe several extensions, modifications and additions

to our active contour model in [8] in an effort to provide precise, intu-

itive initialization and interactive abilities while maintaining the ca-

pability of high-level control and constraints. We use an inexpensive,

off-the-shelf pressure sensitive pen and tablet input device, rather

than a mouse, to allow easy, fast, precise positioning and sketch-

ing of points and lines. We utilize the pressure sensitivity to impart

knowledge of object edge strength. We have also replaced the B-

spline Snake with a new Subdivision-Curve Snake that is simpler

and more general. This new subdivision curve snake can be initial-

ized with a few sketch lines to be extremely close in shape to the

target object. It is naturally multi-scale, allowing coarse to fine and

other custom fitting schedules. We have also improved our general

sketch-line initialization process, taking advantage of the pen input

device features. We demonstrate our sketch-line based Snake on sev-

eral 2D medical images and briefly discuss its performance.

2. SUBDIVISION CURVE BASED DEFORMABLE MODELS

The success of shape model-based segmentation techniques is still

heavily dependent upon the flexibility, controllability, and simplicity

of the underlying shape representation scheme. We propose the use

of subdivision curves (and surfaces in 3D) [11] as a general shape

representation basis for deformable models. We have developed a

Java-based, open source, highly extensible Snakes system known

as JESS[10] for the rapid construction of 2D segmentation systems,

which include subdivision curve Snake implementations.

2.1. Subdivision Curves

The underlying idea behind subdivision methods [11] is the use of

geometric algorithms to progressively subdivide a control polygon

or mesh. Repeated subdivision leads to a hierarchy of increasingly

refined models which approach the limit curve (surface in 3D). One

such algorithm in 2D is based upon Chaikin’s[12] “corner cutting”

method, where a new control polygon is generated by cutting the

corners off the original one (Figure 1). Assume the n vertices of

a control polygon are P
0 = {~p0

0, ~p
0
1, . . . , ~p

0
n−1}, where the super-

script denotes the level of subdivision. Chaikin’s scheme creates
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Fig. 1. Example of corner cutting subdivision to generate a subdivi-

sion curve. (a) Control polygon. (b) After one subdivision. (c) Two

subdivisions.
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subdivision operator as ~pk+1 = ~S~pk.

The positions of the vertices at level k + 1 can be expressed in

matrix form as P
k+1 = S

k+1

k
P

k . The global subdivision operator

S
k+1

k
, which defines level k + 1 in terms of level k, may be rep-

resented as a rectangular (and usually sparse) matrix. The entries

of S
k+1

k
are defined by both the chosen subdivision scheme and the

topology (but not geometry) of the control mesh at level k. The en-

tries and size of the global subdivision operator change at each level.

Maillot and Stam [13] introduced a more general subdivision

curve and surface. This model allows an edge to be subdivided into

any number of pieces, creating the ability to tie the pixel resolu-

tion of the image more closely and naturally to the curve points of a

Snake. The original control points are retained at each subdivision

level, a very important feature if the control points are specified as

landmark constraints. They also introduced a new parameter to allow

the curve to be pushed back towards the control points, interpolating

the control points if desired. This feature allows the user to initialize

a Snake that is very close to the target object shape and to utilize the

user-entered control points as Snake constraints. In this paper, we

use Maillot’s and Stam’s algorithm for our subdivision curve Snake.

2.2. Subdivision-Curve Snakes

To construct a Snake using a subdivision curve, we use the vertices of

the coarsest level control polygon as the degrees of freedom (d.o.f.),

and the finest level vertices as “sensors”. Forces are computed at

these sensor points and then distributed, using weights derived from

the original subdivision rules, to the control points. The Snake is

then constructed with the control points using either the simple ex-

plicit scheme [5] or using the well-known semi-implicit formulation

in [1].

To distribute forces from sensor points at the finest level of the

subdivision curve to the control points, we may use the transpose

of the global subdivision operator: (Sk+1

k
)⊤F

k+1 = F
k, where F

is the generalized external force vector. This process can also be

carried out explicitly for each sensor point using the transpose of the

local subdivision operator.

Subdivision-curve Snakes provide a robust, easily manipulated

(using either user-derived forces or by directly editing the spline-like

curve), smooth, low d.o.f. deformable model that integrates image

feature information between control points. It is efficient, naturally

multi-scale, and the control polygon provides a natural framework

for additional constraints. To increase the accuracy of the segmen-

tation, the user can simply use the vertices at the next level down

the subdivision curve hierarchy as the d.o.f.’s. Alternatively, the user

may interactively select and subdivide a specific edge of the control

polygon to generate a new control polygon, and rerun the efficient

subdivision process.

3. SKETCH-BASED SNAKE INITIALIZATION

Our sketch-based initialization process [8] is simple but effective.

We have extended this process to take advantage of a pressure sen-

sitive pen and tablet. The user uses the pen input device to quickly

sketch lines across the target object. A point is ‘clicked’ on one

side of the object boundary and a line is stretched and rotated in-

teractively to a point on the opposite boundary (Figure 2). If the

object boundary exhibits strong edges near the line, the user need

not sketch the line carefully - the algorithm can be set to automati-

cally search for the strongest edge close to and perpendicular to the

line. However, we have observed that the cursor can be positioned

very precisely and quickly using the pen device, with little fatigue.

(a) (b)

Fig. 2. Example corpus callosum (CC) segmentation using sketch

lines and subdivision curve Snake. In (a) the user sketches a few

lines in an edge detected image resulting in an initial curve extremely

close to the shape of the CC. Note how the initial curve interpolates

the line endpoints. In (b) the Snake instantly locks onto the bound-

ary.

For regions of the object with missing or noisy edges, the user

applies more pressure to the pen as the line is drawn. This indi-

cates to the algorithm that the user is imposing a stronger constraint

and should accept line endpoints as part of the object boundary (by

creating a hard constraint point [7]). The user also takes more care

in positioning the line, ensuring that the line endpoints are placed

where the user has recognized the boundary to be. Thus, optimal use

of human recognition capabilities are exploited. The user is able to

easily and dynamically transfer knowledge of the object boundary to

the algorithm as the Snake is constructed, maximizing the chance of

Snake success and thereby minimizing or eliminating post user edit-

ing/interacting phase. This philosophy is similar to Live Wire [14],

where the cursor speed is used to indicate weak and strong bound-

aries.

As each line is sketched, the algorithm uses it to automatically

update the control polygon, and dynamically displays the resulting

subdivision curve. Thus, the user is given immediate visual feedback

of the Snake construction and can observe the accuracy of the initial-

ization as it progresses. Typically the initial Snake is very close to

the target object shape, ensuring the Snake will lock onto the cor-

rect boundary without editing. Nevertheless, the user may want to

edit (or add to) the initial contour. This is done in two basic ways.

Firstly, the user may “press” (i.e. apply a threshold pressure) on con-

trol polygon edges to “break” (subdivide) the edge, the new control

point may then be dragged to its new position. The control polygon

and curve are automatically updated and drawn as the control point

is dragged. Secondly, if the cursor is placed on or near a control

polygon edge, it becomes the active edge and is highlighted. Conse-

quently, when a new line is sketched by the user, it is connected to



the control polygon via this active edge. These two processes allow a

user to easily outline more complex shapes that may have significant

protrusions or bumps (Figure 5).

Sketch lines and control points may be added during the initial-

ization process or even while the snake is deforming, allowing the

algorithm to be interactively steered. One of the main strengths of

Snakes is the ability to use input-device derived forces to dynami-

cally push or pull on a Snake (i.e. as it is deforming). The user may

also place and move soft constraint “magnets” (or hard constraint

“pin points”) which pull the closest snake point towards the magnet

(or pin the selected closest snake control point). Unlike Live Wire,

which only supports backtracking of the cursor to undo the last path

segment, this type of steering may be performed at any part of the

Snake. Finally, the user may bypass the Snake dynamics and edit

the subdivision curve directly, using the powerful editing semantics

of this spline-like representation. Editing may be performed at any

level of the subdivision, allowing as local an edit as desired. All of

these control mechanisms combine to provide intuitive and precise

steering and editing capabilities.

4. SNAKE CUSTOMIZATIONS AND SHAPE

CONSTRAINTS

As listed in [8], various Snake customizations are possible to im-

prove robustness to noise. In fact, these customizations are now

simpler to implement using the underlying subdivision curve, rather

than a B-Spline, since we store an explicit representation of sen-

sor points at every subdivision level. Due to space limitations, we

will simply list these customizations: the number of sensor points

per control polygon edge can be set so that the number of sensors

roughly matches the image pixel resolution. The number of control

points automatically added between user defined control points can

be set. For each sensor point, a search along its normal is carried

out for a small, user-specified distance (typically only two or three

pixels). The search criteria can be set for edges with a specific mag-

nitude and expected direction. If a matching edge pixel is found, a

spring force is applied to attract the snake point to it. If no matching

edge is found (in the case of a boundary gap or noisy edge pixels),

this pixel does not contribute to the image forces. These combined

features allow a user to “tune” the Snake for a specific object and

image modality and maximize segmentation performance.

One of our design goals was to not lose the ability to utilize

high-level controllers or incorporate global shape constraints. To

create a Snake with the properties of a deformable template model

[8], global shape constraints can be incorporated by connecting con-

trol points on the control polygon using springs. With the push of a

button, the control points can be connected with springs (including

angle springs that maintain angles between adjacent Snake edges),

and these spring constraints can be included as external forces. The

control polygon acts as a spring-mass lattice, constraining the global

shape or symmetry of the Snake. This feature is very useful when

the model is tracking an object from slice to slice. Another mecha-

nism to incorporate knowledge is to have the user sketch lines in a

specific order for a particular object, and at specific critical locations

such as landmark points. Thus, knowledge of global shape, such as

width, is transferred to the Snake and the Snake is made ‘aware’ of

it’s initial position with respect to the target object. This knowledge

can be used in various ways. For example, optimal object-specific

Snake parameterizations can be automatically generated (initially

hand-generated) by adding d.o.f. in optimal locations between the

user-specified control points. Another possibility is the construction

of customized controllers that first fit segments of the Snake in areas

of known strong image feature evidence, then increasing the Snake

stiffness and fitting the Snake in noisy regions.

5. EXPERIMENTAL RESULTS AND DISCUSSION

We have applied our subdivision-curve Snakes to several 2D images.

In Fig. 3 we show the user sketched lines, initial snake and the fi-

nal segmentation for an arm bone and a finger bone in noisy x-ray

images. Some user lines in Figure 3(a) and (c) were drawn with

significantly more pressure applied to the pen, resulting in the au-

tomatic creation of hard constraints (indicated by filled rectangles),

forcing the end points of these lines to be fixed, with the Snake ex-

actly passing through them. In Fig. 3(c), the active edge (the line

at the bottom) was “broken” into two pieces by selecting it and then

applying increased pressure with the pen. A new control point is cre-

ated and this point was dragged into position. This control point was

then selected and increased pressure applied to force the creation

of a hard constraint. We typically switch back and forth between the

edge map image and the input image to determine more easily where

weak boundary areas occur. These x-ray images are very noisy, es-

pecially where two bones overlap. There are many large gaps in

the edges of the bone boundary and many spurious edges inside the

bone. As the initial Snakes are almost the same shape as the target

bones, they are able to ignore edges that are not of a specific magni-

tude and direction. Occasionally a small edit is required to move a

section of the final curve over slightly. We find that using the editing

capabilities of the subdivision curve is sufficient to nudge the section

into the correct position. In our opinion the editing abilities of the

Snake and it’s subdivision curve representation provide much more

flexible control than the simple backtracking provided by Live Wire.

Figures 4 and 5 show two more examples. In both of these ex-

amples, the user has sketched lines and then broken an edge (near

the right bulge of the knee bone and at the bottom of the lung) in

order to create an initial Snake almost the exact shape as the target

objects. We have performed some preliminary experiments to com-

pare our Snake to a Live Wire-like algorithm. In general, for the

objects segmented in this paper, we have found that our system re-

quires approximately half the number of user interactions to achieve

an accurate segmentation than the Live Wire-like tracing algorithm

we used. In addition, we have chosen five corpus callosum images

(as in Figure 2) at random and repeated the segmentation five times

for each image. Our Snake generated essentially (an average error of

less than 1 pixel) the same result for each of the CC’s. Occasionally,

a small nudge of a Snake curve section near the fornix was required

to correct the segmentation.

6. CONCLUSION

Optimizing the performance of semi-automatic model-based seg-

mentation methods for noisy images (and image sequences) requires

fast, precise and fatigue-free initialization, powerful user control and

editing capabilities, and the ability to exploit the image interpreta-

tion abilities of the human expert. The combination of sketching

input lines across an object, a pressure sensitive pen and tablet input

device, and a general subdivision-curve Snake results in a tool that

meets these requirements, and is effective for many segmentation

tasks that cannot be efficiently processed with other techniques. Fu-

ture works involves packaging our entire suite of Snakes tools within

the JESS framework to create a complete open-source segmentation

package that can be applied to virtually any 2D medical image and

object.
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Fig. 3. Segmenting an arm bone from a noisy x-ray image. (a) user

input lines and initial snake (b) segmentation result. (c)(d) segment-

ing finger bone from hand x-ray image. The rectangles indicate hard

constraint points generated automatically from increased user pres-

sure on the pen during line drawing.
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