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IDENTIFICATION OF NON-LINEAR MODELS OF NEURAL ACTIVITY IN BOLD FMRI

Daniel J. Jacobsen, Kristoffer Hougaard Madsen, Lars Kai Hansen

Intelligent Signal Processing
Technical University of Denmark

ABSTRACT
Non-linear hemodynamic models express the BOLD signal as
a nonlinear, parametric functional of the temporal sequence of
local neural activity. Several models have been proposed for
this neural activity. We identify one such parametric model
by estimating the distribution of its parameters. These distri-
butions are themselves stochastic, therefore we estimate their
variance by epoch based leave-one-out cross validation, using
a Metropolis-Hastings algorithm for sampling of the posterior
parameter distribution.

1. INTRODUCTION

Neuroimaging has made major contributions to our under-
standing of the relation between behavior and distribution of
brain information processing. The richest neuroimaging modal-
ity is fMRI based on the so-called BOLD effect, involving the
hemodynamic response which is rather sluggish, non-linear,
and non-local. With the long term goal of increasing the
spatio-temporal resolution of BOLD fMRI, we are interested
in models linking subject behavior, neural activity, the so-
called hemodynamic response, and fMRI BOLD observations,
see e.g., [1, 2, 3, 4].

We will examine the model proposed by Friston et al.
[2] which consists of a set of ordinary differential equations
(ODE’s) that model the evolution in time of four basic phys-
iological state variables: The blood volume v(t), blood in-
flow f(t), amount of de-oxyhemoglobine q(t) and a so-called
’flow inducing signal’ s(t), collected in the state vector, x(t) =
[v(t) q(t) f(t) s(t)]T . The flow inducing signal is driven by
an underlying neural activation function ν(t) - a time function
describing the local neural activity.

The measured BOLD signal yn is then modeled as a non-
linear function of ‘snapshots’ of the continuously evolving
states, with additive white Gaussian noise wn; subscript in-
dices are used for these variables to emphasize the discrete
‘sampled’ nature.

∂x
∂t

= f(x(t), ν(t))

yn = g(x(tn)) + wn

(1)

The BOLD signal is measured with a sampling interval de-
noted TR. The model has seven parameters: σ2

w, the vari-

ance of wn, and six physiological parameters1, combined in
θ =

[
α ε τ0 τs τf E0 σ2

w

]T . E0 is the so-called ‘resting net
oxygen extraction fraction in the capillary bed’.

In addition, we assume that the states evolve from an ini-
tial known resting state x0 = [0 1 1 1]T . The latter assump-
tion is reasonable if a suitably long resting period precedes
stimulation sequences. The dynamical model thus consists of
the set of non-linear differential equations

∂v(t)
∂t

=
1
τ0

(
f(t) − v(t)1/α

)

∂q(t)
∂t

=
1
τ0

[
f(t)

1 − (1 − E0)1/f(t)

E0
− v(t)(1−α)/αqt

]

∂s(t)
∂t

= εν(t) − s(t)/τs − (f(t) − 1)/τf

∂f(t)
∂t

= s(t)

Finally, the BOLD observation model involves the non-
linearity,

g(x(t)) = V0[(k1 + k2)(1 − q(t))
− (k2 + k3(1 − v(t)))]

(2)

with a set of empirical constants taking values V0 = 0.02,
v0 = 40.3, TE = 0.03, r0 = 25, ε = 1.43,
k1 = 4.3E0v0TE, k2 = E0εr0TE, k3 = ε− 1
for BOLD imaging at 1.5T [5]. The BOLD fMRI measure-
ments are spatially sampled in volume elements (voxels).
Experiments are typically ivided temporally in quasi-
independent baseline-activation stimulus ‘epochs’.

2. STATISTICAL MODELING

For given hemodynamic parameters and neural activity, the
likelihood of an epoch is straightforward to set up. First,
the hidden states will evolve deterministically according to
(1) driven by the given neural activity ν(t). We use a vari-
able step-size 4th/5th-order embedded Runge-Kutta method
to solve these [6], with the starting condition x(t = 0) =

1we assume the resting blood volume fraction, V0, to be constant at 0.02
[2]
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x0, the initial (relaxed) state, x0 = [1 1 1 0]T (all values
relative to resting state). This gives a sequence of states,
x1:N ! {x1,x2, . . . ,xN}, corresponding to the sampling
times {t1, t1 + TR, . . . , t1 + N · TR}, where t1 is the start-
ing time of the epoch. The mean BOLD signal is given by

yn = g(xn; θ)

with the observed output modelled as

y∗
n = yn + wn(θ) (3)

As the residuals are assumed normal i.i.d., y∗
n ∼ N (yn,σ2

w),
the likelihood becomes

p(y∗
1:N |θ) =

N∏

n=0

p(y∗
n|θ) =

N∏

n=0

Ny∗
n
(yn,σ2

w).

The neural activity function ν(t) is traditionally assumed to
be a simple square wave signal representing signal ‘on’ during
stimulus and signal ‘off’ during baseline [2]. Buxton et al. [3]
have recently introduced an alternative dynamical model rep-
resenting neural activity which we will use here. This model
posits

ν(t) = a(t) − I(t)
dI

dt
=

κν(t) − I(t)
τ1

,
(4)

where a(t) is the square wave stimulus reference function and
I(t) is an inhibitory feedback signal. The values of the param-
eters are unknown a priori, although in [3], ranges are given as
τ1 ∈ [1; 3], κ ∈ [0; 3]. We refer to them jointly as φ = [κ, τi].

Note that the square wave model obtains as a special case
of this non-linear model as κ/τi → 0.

In this report we will apply this model to real fMRI data
and investigate the posterior distribution of κ and τi. By way
of leave-one-out cross-validation, the uncertainty on these
distributions will further be described.

3. GENERALIZATION AND ESTIMATION
PROCEDURES

The target for this investigation is the posterior distribution of
the parameters of the non-linear neural model, φ:

p(φ|D) =
p(D|φ)p(φ)

p(D)
=

p(D|φ)p(φ)∫
p(D|φ)p(φ)dφ

i.e. the distribution of the parameters conditioned on the ob-
served BOLD data, D. This distribution cannot be obtained
analytically; instead, we employ a Metropolis-Hastings
Markov-chain Monte Carlo (MCMC) method to generate sam-
ples from the posterior.

3.1. Markov-chain Monte Carlo sampling

We use a Metropolis-Hastings (MH) algorithm [7] starting
at an arbitrary state, φ0, and at each step proposing small
changes in φ from a proposal distribution, in our case a Gaus-
sian centered on the ‘current’ state p(φn+1|φn) = N (φn; Σ).
The parameters of the hemodynamic model are sampled si-
multaneously, but as they are not the focus of this report, they
are not discussed further and ignored for clarity (also the ap-
proximate marginal distribution of κ and τi is just the sam-
pled values of these, so no further work is required to obtain
the desired distribution).

The MH method produces samples from the true posterior
distribution in the limit of large number of samples. We em-
ploy a set of heuristics to ensure convergence before averag-
ing, e.g., inspection of saturation of the training set likelihood
and stabilization of the actual parameter values.

A good proposal distribution is major determinant for suc-
ces of the Metropolis-Hastings algorithm. Again we invoke
heuristics: Starting with a spherical normal distribution of di-
mension dimφ, we perform several (short) scout sampling
runs. After each of these, the covariance of the generated
samples is used to adapt the covariance of the proposal, Σ,
scaled to give an acceptance rate of around 0.3. This proce-
dure greatly speeds up the final sampling run (the samples of
the initial runs are not used in averaging).

For most of the parameters, we use simple uniform pri-
ors (p(φ)) over positive parameters; for the oxygen extraction
fraction E0 we use a uniform distribution over the interval
[0, 1].

These samples (φn, n = 1..N ) can then be used as an
empirical approximation of the target distribution, e.g. for
prediction of a BOLD signal y:

p(y|D) =
∫

p(y|φ)p(φ|D)dφ

≈ 1
N

N∑

n=1

p(y|φn), φn ∼ p(φ|D)

The resulting approximate distribution clearly depends on the
particular data set D. To obtain information on the uncer-
tainty of the posterior, we employ epoch-wise leave-one-out
cross-validation. With K quasi-independent epochs available,
each split of the data leaves out one epoch for a test set, which
can be used to validate the ability of the model to prediction
test data, while K − 1 are used for a training set to give an
estimate of the posterior distribution.

To get an estimate of the uncertainty of the posterior dis-
tribution approximations, we fit a normal distribution to the
samples for each cross-validation split. This yields a distri-
bution of means and variances that can be used to illustrate
the variance of the distribution. Each split yields an unbiased
estimate of the true mean and variance of the distribution, and
the mean over all splits is a convex combination thus also an
unbiased estimate, but with a reduced variance.
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4. EXPERIMENTAL EVALUATION

The described method was evaluated on a synthetically gen-
erated data set and on a real BOLD fMRI data set.

4.1. Synthetic data

The synthetic data was obtained by simulating the hemody-
namic model with parameters set to the maximum likelihood
values reported by Friston et al. [2],
θ =

[
0.330.540.981.542.460.34 σ2

w

]T ,
with σ2

w set to produce a desired SNR (signal-to-noise ratio,
measured as the ratio of the de-noised BOLD and observation
noise signals) close to 5.0 dB, which is similar to real record-
ing conditions. κ and τi were set to 2.0 and 1.6 respectively.
The model is initialized in x0, the states are evolved using a
Runge-Kutta solver, and observations are made, adding Gaus-
sian white noise with the prescribed variance. Each epoch
contains 100 samples with sampling interval TR = 1.0s.

To justify our assumption that the BOLD signal is inde-
pendent between epochs, the stimulus for each epoch is set to
zero for the last 30 seconds. This is helpful for two further
reasons. Preprocessing (e.g. removing low-frequency noise),
is aided in that such artifacts can be more accurately estimated
using these ’resting’ portions of data. Finally, it allows us to
assume a known, resting, physiological state (x0) at the start
of each epoch. The stimulus is designed to evoke non-linear
behavior in the model; this is achieved by inter-stimulus in-
tervals (ISI) and stimulus durations (SD) being sampled from
a suitable gamma distribution.

Figure 1 shows parts of the reconstructed neural and BOLD
signals. The posterior mean of κ and τ was 1.92 ± 0.51 and
1.32 ± 0.22 respectively, resulting in very close reconstruc-
tions.
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Fig. 1. (a): One pulse of the reconstructed and true neural
activity. The shape of the signal is retrieved, although the
slope is slightly off, corresponding to a bias in the τi estimate.
(b): Reconstructed and true BOLD signal (first 3 epochs).

4.2. Real data

The data was acquired at Hvidovre Hospital, Denmark, us-
ing a 3T scanner (Magnetom Trio, Siemens). We obtained
1382 GRE EPI volumes each consisting of twelve 3mm slices
oriented along the calcarine sulcus. Additional parameters
where TR=725 ms, TE=30 ms FOV=192 mm, 64x64 acqui-
sition matrix, FA = 82. The stimulus consisted in a circular
black/white flickering checkerboard (24 degrees horizontal,
18 degrees vertical) on a grey background. The checkers re-
versed black/white at 8 Hz. The activation pattern (a(t)) used
to determine on- and offset of this stimulus was the same as
was used to generate the synthetic data.

Fifty significantly activated (as determined by SPM2 anal-
ysis 2 [8]) voxels in visual cortex were selected, and the mean
of these was used as the BOLD signal.

The results are shown in figure 2. The resulting shape of
the neural model is similar to the one found for the synthetic
data, and is significantly different from square. The BOLD re-
construction (see (3.1)) on test data is satisfactory, validating
the model and method. We found posterior mean values of
3.11± 0.76 for κ and 0.87± 0.19 (± one standard deviation)
for τi; again, not close to a square pulse.

Figure 3 shows the normal approximations to the posterior
histograms. These indicate that although there is significant
variation, the mean of all the posterior means obtained from
the leave-one-out cross-validation is identifiable. We expect
with longer sampling runs to bring down this variability - the
important point is that this is a tool that gives guidance on the
reliability of the estimated distribution.
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Fig. 2. (a): One pulse of the estimated neural activity. The
posterior mean reconstruction is shown together with the re-
construction corresponding to ± one standard deviation of the
distribution of the posterior mean. (b): Prediction on real test
data epochs (first 3 epochs).

5. CONCLUSION

The method detailed here can be used obtain to obtain approx-
imate posterior distributions of model parameters together with
estimates on the reliability of these approximations. For the

2Software available from http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 3. (a): Normal approximations of posterior parameter
histograms. (a) and (b) show the variation of the mean and
variance respectively, for the posterior distribution of κ. (c)
and (d) show the same for τi (real data).

parameters of the non-linear neural activity model, we found
posterior mean values of 3.11 ± 0.76 for κ and 0.87 ± 0.19
(± one standard deviation) for τi. Both of these are on the
edge of the ranges given in [3], although not statistically sig-
nificantly so. There is little other information available on
statistical estimation of these parameters.

We find that both κ and τ are identifiable for real BOLD
data, and that κ/τi for our data is significantly greater than
zero. Thus the square model of neural activity which is widely
used in BOLD analysis is not supported by our findings.

The present model may be inverted to produce estimates
of neural activity as indicated in the work of Riera et al. [4]. In
[4] a regularized radial basis function set is used, with param-
eters estimated using a likelihood based approach which leads
to rather smooth activation estimates. Using our Bayesian
sampling approach from an augmented posterior distribution
including parameters of the neural activity time course (such
as stimulus onset times etc.) may be a way to let data de-
termine the level of regularization, hence, potentially lead
to more crisp estimates of non-trivial neural activation se-
quences. This would be of particular interest in more complex
activation designs involving different stimulus activation con-
ditions within epochs. In the present model we have focused
on the local hemodynamics in average data from a region.
The BOLD hemodynamics is non-local and it is an impor-
tant future task to produce a spatio-temporal hemodynamic
model, which could also lead to improved spatial resolution.
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