
ATLAS-ASSISTED TOMOGRAPHY: REGISTRATION OF A DEFORMABLE ATLAS TO
COMPENSATE FOR LIMITED-ANGLE CONE-BEAM TRAJECTORY

Ofri Sadowsky 1 , Krishnakumar Ramamurthi 2, Lotta M. Ellingsen 2,
Gouthami Chintalapani 1, Jerry L. Prince 2, Russell H. Taylor 1

Johns Hopkins University
1 Department of Computer Science

2 Department of Electrical and Computer Engineering

ABSTRACT

We present a method to improve the quality of cone-beam to-
mographic images computed from an intra-operative C-arm
scan by adding information from an anatomical atlas. Lim-
ited range of C-arm view angles leads to reconstruction ar-
tifacts and poor anatomical detail. We propose to complete
the missing views with simulated projections of a statistical
anatomical model, which is deformably registered to match
the data in the C-arm images. This paper presents the meth-
ods used to create the atlas and to register it with x-ray images.
We compare the results of seven leave-one-out simulated hy-
brid reconstruction tests on a population of 13 subjects, with
“ground-truth” CT, a classical short-scan, and a partial-scan
reconstruction.

1. INTRODUCTION

This paper presents a method for hybrid tomographic recon-
struction, which combines data from cone-beam x-ray (C-
arm) and a statistical anatomical atlas to improve the recon-
struction of anatomy and reduce artifacts. C-arm tomography
can provide a fast and economical intra-operative 3D imag-
ing. However, in many surgical situations it is impossible
to rotate the C-arm gantry over a sufficiently large angular
range known as a short scan [1]. Any partial scan that falls
short of this requirement yields reconstructions marred with
strong artifacts and incorrect anatomical details. Our method
compensates for the missing views by combining statistical
knowledge of the anatomy into the reconstruction.

The method uses a statistical atlas which contains infor-
mation about the “average” shape and CT density distribution
in the anatomy, and about typical variations in the shape. The
atlas is registered to a small set of calibrated subject x-ray
images (target images), which may be taken from the partial
scan, to recover the 3D pose and shape that best match the
targets. Synthetic projections of the recovered model are gen-
erated for the missing trajectory angles, and combined with
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Fig. 1. Schematic flow of the hybrid reconstruction process

the C-arm images as input to a standard cone-beam recon-
struction process. The atlas-assisted reconstruction process is
illustrated in Fig. 1. We tested the method using a leave-out
validation. Results are given in Section 5.

The paper is structured as follows. Section 2 provides
background to this paper relating to anatomical modeling and
deformable registration. Section 3 explains the atlas creation
process. Section 4 describes the registration method we use.
Section 5 presents experimental results of reconstruction us-
ing a registered atlas. Section 6 discusses the results and con-
cludes.

2. RELATED WORK

Although there is an extensive literature on rigid 2D/3D regis-
tration of x-ray images to preoperative CT models (e.g., [2, 3,
4]), much less has been published on deformable registration
of x-rays to template bone models. The first work we have
found is that of Fleute [5], who proposed a deformable 2D/3D
method based on a statistical surface model. Subsequently,
Yao [6] developed an intensity-based method combining sta-
tistical models of shape and CT density. Our method is simi-
lar to Yao’s in representing bones by tetrahedral meshes, with
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bone shape determined by the vertex coordinates and radio-
logical density within each tetrahedron represented by barycen-
tric Bernstein polynomials. Following Yao, we create a sta-
tistical atlas by deforming a standard template mesh to match
multiple patient images and performing standard analysis to
extract principal components of variation of shape (vertex co-
ordinates) and density (polynomial coefficients), in a manner
similar to [7].

3. STATISTICAL ATLAS CREATION

This section describes the process of creating the statistical
atlas, including the representation of shape and density, and
the methods used to construct the model.

The statistical atlas consists of a tetrahedral mesh repre-
senting the shape, Bernstein polynomial representing the CT
intensities, and displacement matrices that describe deforma-
tion modes. We can consider the mesh as given using an array
of vertices V and an array of tetrahedral cells T . Every vertex
is a 3D vector, and a tetrahedron is defined using four indexes
into the vertex array: (i0, i1, i2, i3). For simplicity, we will
usually ignore the indexes and write each tetrahedron as four
vertices: Tj = (v0, . . . ,v3). They can be arranged in a ma-
trix of homogeneous coordinates:

MT =
[

v0 v1 v2 v3

1 1 1 1

]
(1)

The density of each cell is represented as a local Bernstein
polynomial function inside the volume of the cell:

f j(u) =
∑
|k|=d

βj
kBd

k(u) =
∑
|k|=d

βj
k

(
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k

)
uk0

0 uk1
1 uk2
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Here, u = (u0, u1, u2, u3)T = M−1
T x are the barycentric

coordinates of a point x in homogeneous coordinates; k =
(k0, k1, k2, k3) is the power index of the basis function Bd

k,
with d being the degree of the polynomial;

(
d
k

)
= d!

k0!k1!k2!k3!
is a multinomial factor; and β is a free coefficient.

The atlas creation process can be summarized as follows.

1. Select a “master” CT dataset, CT0.

2. Manually label the voxels of the anatomy of interest in
CT0 (segmentation).

3. Create a “master” tetrahedral mesh, M0, that covers the
labeled voxels. We use a method developed by Mo-
hamed [8]. The spatial resolution of the mesh is defined
by the user, and typically every cell contains many CT
voxels. The mesh has nv vertices and nt tetrahedra.

4. For each instance CTi in “subject” datasets, find an
elastic transformation Di that maps the voxels of CT0

to corresponding voxels in CTi. We use the registration
method in [9].

5. Apply the deformation Di to the vertices of M0 to ob-
tain a “subject” mesh Mi. Note that all the meshes cre-
ated this way have identical graphs.

6. Take all the mesh instances as shape vectors of size
3nv , including M0, and perform principal component
analysis (cf. [10]) to obtain a mean shape M̄ and vari-
ation modes {Yi} of the shape distribution. The varia-
tion modes are applied to the mean shape with different
weights to create shape instances. Note that the vertices
of the final mesh M̄ are given in some arbitrary coordi-
nate system Fmodel. The registration process (Section
4) maps it to the space of subject images.

7. In each mesh instance Mi, for each tetrahedron Tj , find
polynomial coefficients {βj

k} to approximate the den-
sity values in CTi in the area occupied by Tj . Store all
the coefficients as a matrix Γi.

8. In the current implementation of the atlas, we use the
mean of the density functions {Γi} as the atlas density.

4. REGISTRATION

The deformable registration process matches the atlas to a set
of calibrated patient projections to recover approximated pose
and shape of the patient’s anatomy. A calibrated image is
given as the tuple (I, F, P ), with I being the actual image
(pixel values), F as a rigid transformation representing the
camera pose (extrinsic parameters), and P as parameters of
a projection transformation from the 3D space to image pix-
els (intrinsic parameters). Both F and P are required for a
correct tomographic reconstruction, and we assume that they
are given for each x-ray image, with respect to some constant
reference frame Fworld, e.g., the room.

The registration involves finding a rigid transformation
Freg that relates the model coordinate system Fmodel to the
reference frame:

Fworld = Freg · Fmodel (3)

It also involves finding a set of weights Λ = {λi} that are
applied to the deformation modes to create a patient-specific
instance of the atlas:

SΛ = M̄ +
nmodes∑

i=1

λiYi (4)

Our goal is to approximate the shape of the patient’s ana-
tomy by finding the right combination of λi’s, and the pose
of the anatomy. We do this by optimizing a mutual informa-
tion [11, 6] similarity measure between the patient images and
computed projections (DRR’s) of the model.

(Freg,Λreg) = arg max
(F,Λ)

∑
j

MI(Ij ,DRR(F · SΛ)) (5)
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Fig. 2. Visual comparison of different reconstruction meth-
ods. (a) A slice from a CT scan. (b) A slice reconstructed
from a 207◦ short-scan. (c) A slice reconstructed from a 120◦

partial scan. (d) A slice from a 120◦ partial-scan and 87◦

registered atlas projections. All dynamic ranges have been
scaled uniformly so that zero maps to the gray background in
(a), and white is the maximal intensity value.

We have recently developed a fast method for generating
DRR’s of a deformable tetrahedral mesh [12], which facil-
itates this registration within a reasonable time frame. The
optimal values are searched for using the Downhill Simplex
algorithm, implemented in the VNL package [13].

5. EXPERIMENTS AND RESULTS

Our validation experiments consist of leave-one-out tests. Gi-
ven N subject CT datasets, we pick N−1 and create a statisti-
cal atlas, which is registered with images of the N th subject.
We generate DRR projections of the target dataset along a
trajectory of k degrees (k = 180◦ + cone angle, i.e., a short
scan), in increments of 1◦, and reconstruct the volume in three
ways:

Rfull Using all k projections from the CT (short scan).

Rpart Using a partial scan of l degrees of CT projections.

Rhbd Using a partial scan of l degrees of CT projections, and
completing them with k−l projections of the registered
atlas (hybrid reconstruction).

For the data shown here, an atlas of the pelvis bones was
created, with N = 13. The registration was done on images
of size 256× 256 pixels, and the reconstruction used a size of
512 × 512. The registration used three images, at angles 0◦,
90◦ and 120◦ in the XY plane. In our cone-beam simulations,
the focal-length was set to 750 mm and the cone-angle = 27◦

(k = 207◦).
The reconstruction from 2D projections was done using a

filtered backprojection technique that was used in [14]. How-
ever in this case, we compensate only for missing views, and

R fullCT −

R partCT − R hbdCT −

Fig. 3. Scaled absolute differences between the cone-beam
reconstructed images and the CT image in Fig. 2. Zero is
mapped to black, and the largest absolute difference is white.
Note that the scale of brightness is not as Fig. 2. Comparing
the partial-scan and hybrid reconstruction to the short scan
results in very similar absolute difference images.

the images are not truncated. Note that our atlas covers bone
only, and correspondingly the DRRs in the registration and
reconstruction were computed from a segmented CT dataset.

Examples of reconstructed cross-sections are shown in
Fig. 2. The figure shows corresponding tomographic slices
of the mid-iliac region from a segmented CT image (a), a
cone-beam reconstruction from a short scan (b), a reconstruc-
tion from partial scan (c), and a hybrid reconstruction (d).
The gray levels were scaled uniformly. Reconstructed images
usually contain some negative artifacts, hence the gray back-
ground in image (a), which represents the CT number zero.
For further understanding of these results, Figure 3 shows the
absolute differences between the cone-beam reconstructions
and the CT dataset as intensity levels.

For a quantitative analysis of the results, we compute the
root-mean-square (RMS) difference E between the volumes
as follows:

E(I1, I2) =

√
1

nvox

∑
v∈V

(I1(v) − I2(v))2 (6)

Here, nvox is the number of voxels in both volumetric im-
ages I1 and I2. V is the domain of voxels. Lower RMS values
mean greater similarity between the compared images. Note
that positive and negative background reconstruction artifacts
are included in the RMS difference.

We performed seven leave-one-out tests on our 13-subject
population. The RMS results are summarized in Table 1, in-
cluding the following elements: CT: the segmented target CT
dataset; Rfull: a short-scan reconstruction; Rpart: a partial-
scan reconstruction; Rhbd: a hybrid reconstruction. The Ta-
ble compares all three methods against the “ground truth”
CT, and the partial-scan and hybrid methods against the short
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#
(1)

CT
Rfull

(2)

CT
Rpart

(3)

CT
Rhbd

(4)

Rfull

Rpart

(5)

Rfull

Rhbd

(4)-(5)

/ (4)

%
1 39.0 108.9 73.9 102.3 63.1 38.3
2 37.4 115.5 105.7 109.1 98.0 10.2
3 39.1 118.5 68.6 111.6 56.6 49.3
4 33.4 98.0 70.3 91.3 61.4 32.7
5 38.1 108.0 79.3 101.2 71.1 29.7
6 28.0 104.0 82.4 97.5 74.3 23.8
7 44.0 130.3 94.9 122.7 83.4 32.0
µ 37.0 111.9 82.2 105.1 72.6 31.0

Table 1. Root-mean-square (RMS) difference measure be-
tween different reconstruction methods. The differences are
expressed in Hounsfeld units. The last column shows the dif-
ference between column 5 and column 4 as a percentage of
column 4. The last row shows the mean of RMS differences,
and its respective relative difference.

scan. All the RMS numbers are given in Hounsfeld units. The
last column contains the percent of change in RMS between
columns 5 and 4, with respect to column 4. The reconstruc-
tion included 200 slices: 100 above and 100 below the plane
of rotation. The voxel size is 0.9375 mm in each direction,
and the slice size is 512 × 512 pixels.

6. DISCUSSION AND CONCLUSION

We have shown an average of 31% reduction in RMS dif-
ference going from a partial scan to atlas-assisted tomogra-
phy, taken with respect to the “ideal” short-scan reconstruc-
tion, and a significant visual improvement in reconstructing
anatomical detail. In the worst case the RMS difference was
10.2%, and in the best case 49.3%. We attribute this variabil-
ity to varying qualities of the registration results, and expect
the results to be more regular when a larger population is in-
cluded, and when density variations are added to the atlas. We
are in a continuing our work towards these improvements.

The quality of the atlas deformable registration, which is
highly dependent on the fidelity of anatomical representation
by the atlas, is a key factor in the reconstruction. It is ex-
pected to be further improved by finding the optimal num-
ber of views the optimal view directions. Other experiments
must be performed, such as registration with truncated field-
of-view images and registration with real x-ray images. These
are subjects of our continuing research. Nevertheless, we con-
sider the results presented here, which were obtained with a
small-population atlas, a very good starting point.
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