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ABSTRACT

In this paper, we present a three-dimensional (3D) reconstruc-

tion algorithm for light microscopy supplied with a micro-

rotation device. In contrast to the traditional optical section-

ing techniques where the focal plane is shifted along the op-

tical axis, in micro-rotation imaging, the object rotates where

the focal plane is kept in a fixed position. Our reconstruction

algorithm is based on Bayesian inversion theory where the

imaging model is described by the 3D point spread function

(PSF). The results show that the approach is promising for

3D reconstruction of rotating objects in wide-field light mi-

croscopy, as an improvement for the effective 3D resolution

is provided.

1. INTRODUCTION

Three-dimensional (3D) fluorescence imaging of individual

live cells is an essential tool for cellular biology. Previously,

3D reconstructions have been computed by optical section-

ing (z-stacking) techniques in fluorescence microscopy [1, 2].

The 3D reconstruction is recorded as a stack of 2D images by

shifting the focal plane along the optical axis (z-axis). Due to

the out-of-focus blur, the image stack is restored by deconvo-

lution techniques. However, the z-stacking techniques have

limited resolution, especially along the optical axis.

By the novel micro-rotation technique [3, 4], cells are ro-

tated on a fixed focal plane. Instead of moving the focal plane

along the optical axis, dielectric fields rotate the cell approxi-

mately around a single axis parallel to the focal plane. In this

way, the effective 3D resolution level [5] can be significantly

improved. The method is primarily used for inspecting the

interior structure of objects, such as non-adherent live cells

in suspension. The ideal geometrical setting of the method is

illustrated in Figure 1.

In this paper, we propose a 3D reconstruction method,

based on Bayesian inversion theory, and test it with a micro-

rotating image set. The Bayesian inversion is a statistically

sound approach for solving inverse problems for a selected

noise model where a priori knowledge of the object can be

taken into account. The Bayesian approach has been success-

ful in many applications such as medical imaging [6], electron

tomography [7] and 3D light microscopy with optical section-

ing [8].

In the Bayesian model, we use a Gaussian prior function

for the object densities and assume white noise in the mea-

surements. The projection model of the wide-field micro-

scope is described by a 3D point spread function, we assume

local linearity and shift invariance on the focal plane and take

an advantage of the Fast Fourier Transform (FFT) algorithm

in computing the forward projection model.

In order to solve a 3D reconstruction problem, like the one

we have, the projection directions must be known. The stan-

dard approaches for solving the corresponding motion estima-

tion problem, including fiducial and non-fiducial techniques

[9, 10], seem difficult for our test data due to the lack of de-

tail of the object. In this work, we use the method of motion

recovery without correspondence [11, 12] that better suits for

estimating the motion for these kinds of objects.

The paper begins by introducing the forward projection

model and its adjoint in Section 2. The statistical setting, pro-

viding the solution for the inverse problem, is described in

Section 3. The results of reconstructing the micro-rotating set

are reported in Section 4. Finally, we discuss and conclude

the paper in Section 5.
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Fig. 1. Ideal geometries of optical-sectioning and micro-

rotation techniques. Each line represents the focal plane in

the object coordinate frame.
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2. PROJECTION MODEL

In this section, we will present how the measurement plane

can be constructed from the 3D object, as the 3D Point Spread

Function (PSF) is given. The forward model can be math-

ematically described by the linear operator A : C3 → C2

such that m = Af , where f ∈ C3 is the piecewise continu-

ous density volume and m = {mi} ∈ C2 presents the set of

piecewise continuous projection images. The forward model

is constructed as follows.

As a linear system, a wide-field microscope can be char-

acterized by a 3D PSF which is the response volume for a

point source. If the microscope system is shift invariant, the

operation by the PSF can be represented by the convolution

gi(r) =

∫
R3

fi(r′)h(r − r′) dr′ = fi(r) ∗ h(r), (1)

where gi is the blurred volume and fi(r) = Rif(r) is the ro-

tated object density for the ith projection, Ri is the rotation

operator, h is the point spread function, and ∗ is the convo-

lution operator. We assume that the optical axis is along the

z-direction. The measurement image i is obtained as the plane

corresponding to the focal plane z = d; i.e.,

mi(x, y) = gi(x, y, d). (2)

In the minimization problem, we additionally need the ad-

joint operator A∗ : C2 → C3 which describes the construc-

tion of a 3D object from the measurement planes by zero-

padding, correlation, rotation and superimposing the obtained

volumes. In other words, let f̃ = A∗m, where m = {mi} ∈
C2 and f̃ ∈ C3; we get

f̃(r) =
∑

i

∫
R3

g̃i(r′)h(r′ − r) dr′, (3)

where g̃i(r) = R∗
i {mi(x, y)δ(z − d)} and δ(z) is the Dirac-

delta function.

Due to linearity of the operator A, the discretized model

can be represented as a linear system

m = Af, (4)

where f is a vector of density values (voxels), m is a vector of

all the image measurements (pixels), and the matrix A is the

block Toeplitz matrix representing the 2D convolution oper-

ations. In practice, the matrix-vector product can efficiently

computed by the FFT algorithm while the 3D interpolation

between PSF and rotating object coordinates is required in

computing the convolution integrals. For the adjoint operator,

the corresponding discretized model is f̃ = ATm.

3. BAYESIAN INVERSION

We consider the linear model with additive white Gaussian

noise, i.e.,

m = Af + n, (5)

where m, f and n are vectors of random variables.

In Bayesian inversion theory, the complete solution for an

inverse problem is represented by the posterior distribution,

given by Bayes’ formula

p(f|m) =
p(f)p(m|f)

p(m)
∝ p(f)p(m|f), (6)

where p(m|f) is the likelihood density, p(f) is the prior density

and p(m) is a normalization constant. The posterior distribu-

tion is often very large dimensional, so an efficient tool for

estimating the solution is crucial.

In the paper, we select the maximum a posteriori (MAP)

estimate which is obtained from

f̂ = arg max p(f|m). (7)

It means that for the given prior density p(f) and the measure-

ment data m, we determine the unknown values f which are

in the best agreement with the model (5).

Assuming zero mean, isotropic Gaussian noise with vari-

ance σ2
n, the likelihood function is

p(m|f) ∝ exp

(
−‖m − Af‖2

2σ2
n

)
. (8)

The next question is how to choose the prior density function

p(f). For simplicity, we select the Gaussian, white noise prior

with the positivity constraint, i.e.,

p(f) ∝ exp

(
−‖f‖2

2σ2
f

)
u(f), (9)

where the step function u(f) equals to one when all the ele-

ments in f are positive; otherwise it is zero.

Inserting (8) and (9) into (6), the computation of MAP (7)

implies minimizing

f̂ = arg min
{‖m − Af‖2 + λ‖f‖2

}
(10)

= arg min
{

eTe
}
,

where the vector e = (m − Af,
√

λf)T and the regulariza-

tion parameter λ = σ2
n/σ2

f . In other words, the higher the

noise level σ2
n in the measurements the larger the regulariza-

tion parameter is required. The statistical estimation problem

is hence converted into an optimization problem.

In practice, we compute the MAP-estimates by the trust-

region iterative method as implemented in Matlab Optimiza-

tion Toolbox [13]. As the trust-region algorithm is the second-

order iterative method, the minimization requires computing

of the operations JTJy, Jy and JTy, where J is the Jacobian

matrix of the vector e, and y is a vector. Instead of explicitly

creating a huge Jacobian matrix and computing the expensive

matrix-vector product, the Jacobian operations can efficiently

be computed by the FFT algorithm similarly as explained in

Section 2.
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Fig. 2. Example images of prophase chromosomes in cell

mitosis.

4. RESULTS

The proposed method was tested with a micro-rotation set

representing a cell mitosis. This set consisted of 90 images,

with 195×212 pixels, obtained by a wide-field light micro-

scope; after the translation correction and the cropping of re-

gion of interest, the final size used was 121×121. By applying

the motion estimation method, we found out that there were

five complete revolutions with the fundamental period of 18.1

images. Figure 2 shows some example images from the set.

The simulated 3D PSF corresponding to the microscope

setup was computed by the SVI Huygens software [14], see

Figure 3. The upper row shows the 1D-plot along x and z-axis

(optical axis) at the center of the PSF; the lower row displays

the two 2D-slices of the xy-plane (corresponding to the focal

plane) and the yz-plane.

The full size (121×121×121) reconstruction of the mito-

sis set is illustrated in Figures 4–6. Figure 4 and 5 show the xz

and yz-slices through the reconstruction while Figure 6 dis-

plays a wall-eye stereo-view of the reconstruction. As can be

seen, our reconstruction method was successful, even though

there seem to be small grain artifacts around the rotation axis

(x-axis) at the center of yz-slice.

5. CONCLUSIONS

In this paper, we have proposed a Bayesian method for solv-

ing the 3D reconstruction of a rotating object from wide-field

light microscope images, assuming that the motion estimates

and the PSF are available. We used a Gaussian prior function

and assumed white noise in the measurements. The method

was experimented with a micro-rotating set of a cell mitosis.

The results show that, the complex cell structure can be re-

constructed by the method.

In future, there are plenty of things to investigate such as

the selection of a more sophisticated prior function and the

value for the regularization parameter. These extensions have

been intensively investigated with the optical sectioning tech-

niques in the last two decades, while most of them can be di-

rectly applied for the new methodology. The computation of

the 3D reconstructions with our current implementation is rel-

atively expensive. The computational improvement is hence

another topic in the further work.
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Fig. 3. The three-dimensional point spread function.
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salo, “Statistical inversion for medical X-ray tomogra-

phy with few radiographs II: Application to dental radi-

ology,” Phy. Med. Bio. 48, pp. 1465-1490, 2003.

[7] U. Skoglund, L.G. fverstedt, R. Burnett, and

G. Bricogne, “Maximum-entropy three-dimensional

reconstruction with deconvolution of the contrast

transfer function: a test application with adenovirus,” J.

Struc. Bio., vol 117, pp. 173-188, 1996.

[8] P.J. Verveer, M.J. Gemkow, T.M. Jovin, “A compari-

son of image restoration approaches applied to three-

dimensional confocal and wide-field fluorescence mi-

croscopy,” J. Microsc. 193: 50-61, 1999.

[9] S. Brandt, J. Heikkonen, and P. Engelhardt, “Multiphase

method for automatic alignment of transmission elec-

tron microscope images using markers,” J. Struct. Biol.,

vol 133(1), pp. 10-22, 2001.

[10] S. Brandt, J. Heikkonen, and P. Engelhardt, “Automatic

alignment of transmission electron microscope tilt series

without fiducial markers,” J. Struct. Biol., vol 136(3),

pp. 201-213, 2001.

[11] S. Brandt and V. Kolehmainen, “Motion without corre-

spondence from tomographic projections by Bayesian

inversion theory,” In Proceedings of the IEEE Computer

Fig. 5. Example yz-slices of the reconstruction.

Fig. 6. 3D wall-eye stereo-view of the reconstruction.

Society Conference on Computer Vision and Pattern

Recognition (CVPR), vol I, pp. 582-587, Washington

DC, June 2004.

[12] S. Brandt and M. Mevorah, “Camera Motion Recov-

ery without Correspondence from Micro-Rotation Sets

in Wide-Field Light Microscopy,” Submitted for publi-

cation.

[13] T.F. Coleman and Y. Li, “An Interior, Trust Region Ap-

proach for Nonlinear Minimisation Subject to Bounds,”

SIAM J. Optim., vol 6, pp. 418-445, 1996.

[14] http://www.svi.nl/

1279

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 14, 2008 at 04:34 from IEEE Xplore.  Restrictions apply.


