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ABSTRACT

In this paper, we propose a hybrid approach for the auto-

matic three-dimensional segmentation of coronary arteries us-

ing multi-scale vessel filtering and a Bayesian probabilistic

approach in a level set image segmentation framework. The

initial surface of the coronaries is obtained from the multi-

scale vessel filter response, and the surface then evolves to

capture the exact boundary of the coronaries according to an

improved evolution model of implicit surfaces. In our model,

the image force and the propagation terms are re-defined us-

ing posterior probabilities obtained via Bayes’ rule in order

for the surface to approach to the boundaries faster and stop

at the boundaries more accurately. The proposed method is

tested on seven CT angiography (CTA) data-sets of left and

right coronary arteries, and the quantitative comparison of

our result against manually delineated contours on two of the

data-sets yields a mean error of 0.37mm.
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1. INTRODUCTION

Cardiovascular disease (CVD) is the most prevalent cause of

death in the United States, and among the various types of

CVDs, coronary heart disease accounts for the largest per-

centage (53%) as reported by American Heart Association

[1]. Imaging techniques, such as X-ray angiography, MR

angiography, and CTA have greatly assisted the diagnosis of

coronary heart disease by imaging coronary arteries in living

patients. Viewing and navigating through the images, how-

ever, becomes a laborious task. For each patient imaged, a
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large number of 2D images (e.g. over 200 slices for CTA) are

needed to include the complete coronary tree. The complex

shape of the coronaries also poses difficulties for one to vi-

sualize the 3D shape by looking at the 2D slices or to make

measurements directly from the 2D slices. A maximum inten-

sity projection (MIP) will not in general provide a satisfying

visualization, since in CTA images, not only the coronary ar-

teries appear in high intensity, but other blood-filled regions

as well. Efficient image segmentation algorithms are essential

for the isolation and visualization of coronary arteries. Once a

segmentation is achieved, coronaries can be visualized as 3D

surfaces, and various measurements can be performed conve-

niently in a 3D sense.

There have been many algorithms proposed for the seg-

mentation of curvilinear structures in 3D; see [8] for a com-

prehensive survey of these methods. We mention here two of

the most popular approaches: parametric (e.g., [15]) and geo-

metric (e.g., [2]) deformable models. While many times giv-

ing satisfactory results, there are nevertheless some problems

with these techniques. For example, parametric deformable

surfaces do not directly allow topological changes, and the

geometric or level set approach is computationally expensive.

Conventional deformable models also suffer from leakage at

places where the intensity gradients of the edges are relatively

weak, and are very sensitive to the placement of the initial

contour of the propagating front. A number of methods have

been investigated to help alleviate these problems. For exam-

ple, vessel filters [6, 11] can be used to enhance curvilinear

structures in 3D and suppress other types of structures; local

shape constraints [10] and front freezing methods [5] have

been used in the level set framework to discourage leakage.

These techniques, however, do not address the problem with

the image force, which sometimes leads to a narrowed seg-

mentation of vessels [9] when intensity gradients are the only

measure used for the force.

We propose a hybrid approach that incorporates Bayesian

posterior probabilities into the level set segmentation frame-

work by defining a new image force term that provides better

defined valleys for the values at the boundaries in order to

stop the evolving surface. This prevents the undesired result
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of narrowed vessels when using image terms based on inten-

sity gradients. An adaptive propagation term that allows the

surface to change its propagating direction is also proposed

using posterior probabilities to effectively prevent leakage. A

multi-scale vessel filter is applied to eliminate structures with

the same intensity as the coronaries but without a vessel-like

shape. From the filter response we also obtain the initial sur-

face for the level set segmentation.

2. METHODS

We refer the reader to the texts [12, 13] for extensive treat-

ments (and references) of level set methods and their use in

image segmentation. In this section, we very briefly review

some of the relevant facts.

We accordingly start with the classic formulation of level

set flow used in image segmentation:

∂Ψ
∂t

+ F |∇Ψ| = 0, (1)

where Ψ(x, y, z, t) is the level set function (usually initialized

via a signed distance function) with zero level-set represent-

ing the implicit 3D surface, t is an artificial time parameter

(which in certain cases represents a gradient descent param-

eter), and F is a scalar speed function usually depending on

local curvatures κ, propagation force ν and image stopping

term φ: F = −φ(ν + κ).
With the usual choice of these terms, ν represents a uni-

directional constant inflationary force, and φ = 1
1+‖∇Gσ∗I‖2

where Gσ is a Gaussian filter with standard deviation σ and

I is the image intensity function. Unfortunately this clas-

sic level set method and its many variations fail to segment

coronary arteries. The major problems are leakage and nar-

rowed vessels; see Figure 1(a) for a 2D example. In order

to achieve a successful and accurate segmentation, we incor-

porate Bayesian posterior probabilities into the level set seg-

mentation framework to construct a new image term and an

adaptive propagation term for the segmentation of coronary

arteries.

2.1. Bayesian Driven Image Term and Adaptive
Propagation Term

We first calculate the Bayesian posterior probabilities of the

voxels within the volume of interest [7] as follows:

Pr(x ∈ ck|I(x) = i) =
Pr(I(x) = i|x ∈ ck)Pr(x ∈ ck)

∑
γ Pr(I(x) = i|x ∈ γ)Pr(x ∈ γ)

.

(2)

This means that given the probability density function

p(I(x)|ck) of each image class ck and the prior probability

Pr(x ∈ ck) of each class, posterior probabilities can be cal-

culated via the Bayes’ rule (2) in order to give the probabil-

ities of a single voxel at position x = (x, y, z) belonging to

different classes.

In this preliminary work, the prior probability Pr(x ∈ ck)
is chosen to be 1/n (n is the total number of classes) to im-

pose equal weights on all the classes. A Gaussian mixture

model (GMM) is used to approximate to histogram of the im-

ages, in order to provide the probability density function for

each class. Note that the noise property of CT images makes

GMM a natural choice for this purpose. If other types of im-

ages such as ultrasound images are of interest, other functions

in addition to the Gaussian should be considered in order to

achieve a better approximation. We use the expectation max-

imization (EM) method to estimate the mean and standard

deviation of the Gaussian function for each class. The EM

procedure is initialized with a k-means clustering of down-

sampled voxels within the volume of interest.The posterior

probabilities are then anisotropically smoothed using an affine

invariant 3D filter as in [14] in order to reduce noise.

We now construct the image stopping term from the pos-

terior probabilities obtained as above. Suppose we have a

bimodal image with class cin representing the object to be

segmented, and class cout representing the background. We

then define the image stopping term as the squared difference

between the posteriors that voxel x belongs to cin and cout:

φ(x) = (Pr∗(x ∈ cin) − Pr∗(x ∈ cout))2, (3)

where Pr∗ is the smoothed version of the posterior probabil-

ity using the anisotropic filtering. This can be easily extended

to n classes (n > 2) by using the squared difference between

the largest two posterior probabilities for the current voxel.

Figure 1 (b) & (d) compare the image term based on gradi-

ents and the one based on posterior probabilities. It can be

easily seen that the newly proposed image term provides a

better defined dark valley at the boundaries, and within a ho-

mogeneous region, it has a smooth large value that allows the

surface to propagate faster.

In order to define an adaptive inflationary term, we first

use the maximum a posteriori (MAP) rule to obtain a classifi-

cation for each voxel:

C(x) = arg max
c∈{cobject,c1,...,cn−1}

Pr∗(x ∈ c|I(x) = i), (4)

where C(x) is the class to which voxel x belongs. The func-

tion ν can then be defined (for k1, k2 > 0) as follows:

ν(x) =
{ −k1 if C(x) = cobject,

+k2 if C(x) = cother.
(5)

This means that when the current surface has a higher

probability of being inside the object at a certain voxel, the

propagation term will force the surface to expand, and when

the surface has a higher probability of being outside of the

object, this term will force it to shrink. The adaptive propa-

gation term effectively prevents leakage, and because there is
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(a) (b)

(c) (d)

Fig. 1. Comparison of the segmentations using the conven-

tional level set method and the proposed method; circles in (a)

& (c) are initial contours. (a). Leakage and narrowed segmen-

tation occur in the result of the conventional method; (b). Im-

age stopping term based intensity gradients, used for generat-

ing (a). Darker region indicates lower values; (c). Successful

segmentation achieved using the proposed method; (d). Im-

age stopping term based on Bayesian posterior probabilities,

used for generating (c).

an extra force to pull the contour back if it should leak, k1 can

be set to a larger constant than in the conventional active con-

tour model to inflate the surface with larger force. This helps

to reduce the total number of iterations and thus reduce the

computational cost. Figure 1(c) shows the result of success-

fully segmenting a 2D vessel using the proposed image term

and adaptive propagation term. Here we compared our results

only with the conventional edge based method since they both

have an edge map generated during the segmentation process.

There exist many other segmentation methods, such as the

widely used region-based methods [4, 17], for which we leave

possible comparisons to future work due to the length of this

note.

2.2. Multi-scale Vessel Filtering for the Generation of Ini-
tial Surfaces

One of the challenges in segmenting coronaries from CTA im-

ages in 3D is that several objects such as the aorta and heart

chambers are in the same intensity range as the coronaries,

and as a result, starting the segmentation with an initial sur-

face near these objects will easily lead to leakage. These ob-

jects, however, can be eliminated using shape filters since they

are usually blob-like structures and have very different shape

features than tube-like structures (coronary arteries). The iso-

surface of the vessel filter response can then serve as the initial

surface for level set segmentation and significantly reduce the

number of iterations as oppose to starting with a seed point.

The vessel filter is based on the analysis of the eigenvalues

of the Hessian matrix of the 3D image, and the elements of the

Hessian matrix can be calculated by convolving the image

with the second partial derivatives of an isotropic Gaussian

function with standard deviation σf .

The properties of the eigenvalues (|λ1| ≤ |λ2| ≤ |λ3|) of

the Hessian matrix give important information about the type

of structures to which the given voxel belongs. The follow-

ing condition indicates that the voxel belongs to a vessel-like

structure [3]:

{
0 ≈ |λ1| � |λ2| ≤ |λ3|,
λ2 < 0, λ3 < 0.

In order to differentiate the vessel-like structure from other

types of structures, we adopted the “vesselness” measure pro-

posed by Frangi et al. [6]. This measure gives larger values

for vessel-like structures and smaller values for other types of

structures. The vesselness measure is calculated at different

scales by using several different values of σf , and the final

vessel filter response is obtained by selecting the largest fil-

ter response of the measure at different scales. In addition,

to eliminate a false positive response of the vessel filter from

vessels inside the lungs, a heart segmentation is obtained first,

and only voxels within the heart are made candidates for ves-

sel filtering.

3. RESULTS AND VALIDATION

To test the proposed method, seven data-sets imaged at differ-

ent clinical sites using different CT machines were segmented

for coronary arteries. For level set implementation, we used

the narrow band approach to reduce computational cost.

Figure 2 lists two data-sets as examples showing the 3D

segmentation results of left and right coronary trees as sur-

faces. It can be seen that the main coronary arteries: left main

(LM), left anterior descending (LAD), left circumflex (LCX)

and right coronary artery (RCA) have all been successfully

extracted and visualized. Figure 2 (b) shows the segmented

left coronary tree rendered with the heart. Figure 3 shows

two slices of the original images overlaid with the segmen-

tation contour. It can be seen that the coronary arteries are

successfully extracted and other objects with the same inten-

sity are left as is.

Validation is conducted in two manners. We first evalu-

ate the method by calculating the successful vessel extraction

rate on all seven data-sets. For the four main coronary arter-

ies LM, LAD, LCX and RCA, the success rate was 100%.

On the left side, our method extracted a total of four branches

in 4 of the data-sets (57%), and three branches in 3 data-sets

(43%). Two data-sets were then compared against expert de-

lineated contours based on the availability of the manual seg-

mentation. In terms of coverage rate, 89.5% and 86.3% expert

delineated cross-sections of coronaries are detected and seg-

mented by our method. All individual contours are compared

against the manually drawn contours, and the average mean

distance error is 0.37 mm. The average of maximum error is

1.36 mm for these two data-sets. The results of the automatic
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(a) (b)

Fig. 2. 3D results. (a) Left and right coronary arteries ren-

dered as surfaces. (b) Left coronaries rendered with the heart.

(a) (b)

Fig. 3. Segmentation results shown in 2D. (a) slice 62, and

(b) slice 70 from the dataset shown in Fig. 2 (b).

approach, however, usually exhibit a much smoother appear-

ance than the manual segmentation, especially when rendered

as a surface in 3D, which means the automatic approach pre-

serves better coherency across slices.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach that segments coro-

nary arteries from CTA images using Bayesian driven level

set models and multi-scale vessel filtering. The method was

tested on real clinical data and promising results were achieved.

Based on the coronary surfaces obtained in this work, more

analysis may be conducted, such as generating centerlines

and measuring cross-sectional radii/areas in order to detect

and evaluate coronary stenosis [16]. Another possible future

research direction is the segmentation and detection of soft

atherosclerotic plaques in the vessel wall. The surface ob-

tained in this work represents only the inner boundary of the

arterial wall, and the volume formed by the surface represents

the lumen. No information was given about the possible soft

plaque, which is the most significant indicator of atheroscle-

rosis. CTA is now capable of capturing soft plaques but with

a very poor contrast. Thus, segmenting soft plaques can be an

interesting and challenging problem.
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