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ABSTRACT

We present a modified version of the deconvolution algorithm

introduced by Figueiredo and Nowak, which leads to a sub-

stantial acceleration. The algorithm essentially consists in al-

ternating between a Landweber-type iteration and a wavelet-

domain denoising step.

Our key innovations are 1) the use of a Shannon wavelet

basis, which decouples the problem accross subbands, and

2) the use of optimized, subband-dependent step sizes and

threshold levels.

At high SNR levels, where the original algorithm exhibits

slow convergence, we obtain an acceleration of one order

of magnitude. This result suggests that wavelet-domain �1-

regularization may become tractable for the deconvolution of

large datasets, e.g. in fluorescence microscopy.
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1. INTRODUCTION

During the past decade, biological imaging has been revo-

lutionized by the rapid diffusion of novel fluorescent label-

ing techniques and digital microscopy [1]. Researchers in the

life sciences are increasingly relying on 3D deconvolution to

improve the resolution of their brightfield or confocal micro-

graphs. Presently, the major challenge is the size of these data

sets, which explains why commercial deconvolution packages

for biomicroscopy employ relatively simple algorithms. Non-

linear deconvolution, based on more sophisticated regulariza-

tion schemes, is still considered to be out of reach, because it

is computationnally too demanding.

In this paper, we present preliminary results that demon-

strate the feasibility of faster deconvolution algorithms for

wavelet-domain �1-regularization. Our target is a computa-

tional cost corresponding to no more than 30 iterations of

a classical Landweber or Richardson-Lucy algorithm, which

constitutes the present tolerance limit for typical 3D data sets.

Consider the image-formation model in Fig. 1. The prob-

lem of deconvolution lies in the recovery of the characteristic

function xorig of an object which is observed through a con-

volutive imaging system. In microscopy, the measured image

corresponds to a 3D convolution of xorig with h, the impulse
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Fig. 1. The image-formation model.

response of the system (aka point spread function); in addi-

tion, a noise component n corrupts the measurements.

We will assume that, after a suitable discretization, the

image-formation process in d dimensions can be summarized

by the matrix equation

y = Hxorig + n.

Here, the boldface symbols y, xorig and n represent vectors

of dimension Nd containing uniform samples of the signals

y, xorig and n respectively. We shall further assume periodic

boundary conditions. This means that the matrix H, which

approximates the convolution with h in the continuous do-

main, is taken to be block-circulant.

It is well-known that the recovery of xorig from y is an ill-

posed problem [2]. Most approaches for overcoming this ill-

posedness can be described in a variational framework, where

the quality of an estimate x of xorig is measured by a cost-

function J(x); the lower this cost function, the better the es-

timate. Typically J(x) is composed of two terms: a data
term that measures the mismatch between the estimate and the

measured signal, and a regularization term that favors certain

properties of the estimate, based on a priori knowledge of the

original signal. The influence of both terms is balanced by a

regularization parameter λ.

Recently, several research groups have advocated wavelet-

domain regularization [3, 4, 5, 6], based on the assumption

that many natural signals have a sparse wavelet expansion. In

this framework, the functional takes the form

J(x) = ‖y −Hx‖22 + λ‖Wx‖1. (1)

Here the data term is simply the squared Euclidian norm of

the residual in the image domain. W is an orthonormal

wavelet-transform matrix. The regularization term ‖Wx‖1
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represents the sum of the absolute values of the wavelet coef-

ficients of x. This tends to favor estimates that can be repre-

sented with a small number of large wavelet coefficients.

The paper is organized as follows. In Section 2, we first

recall the approach of Daubechies et al. [5] for the minimiza-

tion of (1) — essentially the same algorithm is also derived in

[4] and [6]. We then present a faster variant of this algorithm

in Section 3. Numerical examples follow in Section 4.

2. THE THRESHOLDED LANDWEBER
ALGORITHM

2.1. Bound optimization

Our method belongs to the category of so-called bound opti-

mization algorithms [7]: rather than minimizing the cost func-

tion directly, we use a sequence of auxiliary functionals that

are easier to minimize.

Similarly to Daubechies et al. [5], we will use functionals

of the form

J̃(x,a) = J(x) + (x− a)T Q(x− a)− ‖Hx−Ha‖22, (2)

where a is a suitable vector. The negative term is introduced

to cancel the coupling due to the convolution matrix H, which

hinders the direct minimization of J(x). The formulation pre-

sented in [5] uses a matrix Q of the form αI, where α is a

scalar and I is the identity matrix; but the concept can read-

ily be extended to more general operators (see Remark 2.4 in

[5]). The key-point is that Q be chosen such that:

1. Q is diagonalized in the wavelet basis; i.e., Q =
WT DW where D is diagonal.

2. Q−HT H is positive definite; i.e., vT (Q−HT H)v > 0
for any non-zero vector v.

The first property ensures that Q does not introduce further

coupling in the wavelet domain. The second property has two

important consequences:

• Since J(x) is convex, J̃(x,a) is strictly convex; i.e., it

admits a unique minimizer.

• For any given a, J̃(x,a) is a strict (except when x = a)

upper-bound of J(x). This implies that, if we are able

to find the minimizer of J̃(x,a) (and if this minimizer is

different from a), then we are also guaranteed to strictly

decrease J(x). If the minimizer is such that x = a, then

we have also reached the minimum of J(x).

Another important remark is that the closer x is to a, the more

J̃(x,a) can be considered a good approximation of J(x).
This leads to the iterative algorithm

x(n+1) = arg min
x

J̃(x,x(n)), (3)

whose convergence is established in [5]. This means that the

distance ‖x(n+1) − x(n)‖2 between two successive minimiz-

ers of the functionals J̃(x,x(n)) tends to zero as n → ∞,

and essentially implies that their limit is the true minimizer of

J(x).

2.2. Daubechies et al.’s derivation revisited

Using Q = I as a strict upper-bound of HT H is always

possible, provided the largest eigenvalue of HT H is strictly

smaller than 1. We shall assume this to be true for the remain-

der of this paper. With this choice of Q, one can verify that

the auxiliary functional defined by (2) is simply

J̃(x,a) = ‖x−
(
a + HT (y −Ha)

)
︸ ︷︷ ︸

z

‖22 + λ‖Wx‖1 + c

= ‖Wx−Wz‖22 + λ‖Wx‖1 + c, (4)

where c is a constant with respect to x. The second relation is

provided by Parseval’s equality, since we are considering an

orthonormal wavelet basis.

The key point is that the minimization of (4) with respect

to x (or Wx) can be solved in a coordinate-wise fashion in

the wavelet-domain. This is known to boil down to a soft-

thresholding operation, with λ/2 as threshold level [8]. The

term highlighted as z may be interpreted as a signal to be

denoised. On the other hand, z corresponds exactly to the up-

date formula of the classical Landweber algorithm [2], when

replacing a by x(n) according to (3).

Thus, starting from an initial estimate x(0), the algorithm

proposed by Daubechies et al. alternates between two steps:

• a Landweber iteration x(n+1) ← x(n)+HT (y−Hx(n));

• a denoising operation x(n+1) ← Tλ/2

{
x(n+1)

}
.

Here Tλ/2 is the (wavelet-domain) soft-thresholding operator.

More precisely, let us index the wavelet subspaces using a

scale parameter j ∈ �0, jmax�. The corresponding basis ele-

ments will be denoted wj,k, where k is a translation parame-

ter belonging to a set Tj . Note that we include the (coarsest-

scale) scaling functions in this notation; by convention, they

shall correspond to j = 0. Then x =
∑jmax

j=0

∑
k∈Tj

xj,kwj,k,

where the xj,k are the wavelet (and scaling) coefficients of x,

and the soft-thresholding operator is

Tλ/2{x} =
∑
k∈T0

x0,kw0,k

+
jmax∑
j=1

∑
k∈Tj

sgn(xj,k) (|xj,k| − λ/2)+ wj,k.

This definition can be adapted to complex wavelet decompo-

sitions by replacing sgn(xj,k) by ei arg(xj,k).
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3. AN ACCELERATED ALGORITHM

Using the previous algorithm, Figueiredo and Nowak have

reported numerical results that are competitive with state-of-

the-art deconvolution methods [4]. However, at high SNR

levels, the convergence is particularly slow (see the numerical

examples in Section 4).

In what follows, we construct upper-bounds that approx-

imate the original cost function more closely. Thereby, we

will need fewer auxiliary functionals (which means fewer it-

erations) for its minimization.

3.1. A tighter wavelet-domain bound for HT H

From now on, we will assume that wj,k corresponds to a

Shannon wavelet basis [9]. Also, for a vector v, we will de-

note (vj)j∈�0,jmax�
its projection on the jth wavelet subspace

(respectively the scaling function subspace when j = 0).

(Sj)j∈�0,jmax�
will stand for the frequency-support of the cor-

responding basis functions. Finally, we let (ĥ[ν])ν∈�0,N−1�d

be the DFT coefficients of the filter that generates the circu-

lant matrix H. This means that the eigenvalues of HT H are

the scalars |ĥ[ν]|2. Then the following theorem holds:

Theorem 1. For any vector v,

‖Hv‖22 ≤
jmax∑
j=0

(
max
ν∈Sj

|ĥ[ν]|2
)
‖vj‖22.

Proof. Because their frequency-supports are disjoint, the vec-

tors (Hvj)j∈�0,jmax�
are mutually orthogonal. Therefore,

‖Hv‖22 =
jmax∑
j=0

‖Hvj‖22.

Introducing the DFT coefficients v̂j [ν] of vj and applying

Parseval’s relation, it follows that

‖Hv‖22 =
1

Nd

jmax∑
j=0

∑
ν∈�0,N−1�d

∣∣∣ĥ[ν]v̂j [ν]
∣∣∣2

=
1

Nd

jmax∑
j=0

∑
ν∈Sj

∣∣∣ĥ[ν]v̂j [ν]
∣∣∣2

≤ 1
Nd

jmax∑
j=0

(
max
ν∈Sj

|ĥ[ν]|2
) ∑

ν∈Sj

|v̂j [ν]|2.

Reapplying Parseval’s relation in the opposite direction com-

pletes the proof.

This result allows us to design an upper-bound of HT H
that is tighter than the identity matrix. Indeed, in a given

subband, the maximum value of |ĥ[ν]|2 is potentially much

smaller than 1. We can thus choose the eigenvalues dj,k =

wT
j,kQwj,k in a subband-dependent manner, i.e., such that

dj,k = dj . Provided that dj > maxν∈Sj
|ĥ[ν]|2 for all

j ∈ �0, jmax�, Theorem 1 guarantees that

‖Hv‖22 < vT Qv =
jmax∑
j=0

dj‖vj‖22

for any non-zero vector v.

3.2. Summary of the proposed algorithm

Now, expanding (2) yields (up to an additive constant)

J̃(x,a) = xT Qx+λ‖Wx‖1−2xT
(
Qa + HT (y −Ha)

)
.

In our case, this can be rewritten as a sum of terms that depend

only on a specific wavelet subband1:

jmax∑
j=0

dj

(
‖xj − [a + τjHT (y −Ha)]j‖22 + λτj‖Wxj‖1

)
,

where τj = 1/dj . An important consequence is that we can

minimize each term independently.

Even more importantly, the individual terms have the same

form as in (4), up to a (positive) multiplicative factor. There-

fore, they can be minimized using essentially the same al-

gorithm as before — with the same cost per iteration — but

with subband-dependent parameters. We now have to alter-

nate between the following two steps, for each wavelet sub-

band j ∈ �0, jmax�:

• a Landweber iteration with an adapted step size,

x(n+1)
j ← x(n)

j + τj [HT (y −Hx(n))]j ;

• a denoising operation with an adapted threshold,

x(n+1)
j ← Tλτj/2

{
x(n+1)

j

}
.

In practice, the algorithm alternates between the frequency

domain, for the Landweber update, and the wavelet domain,

for the thresholding. Additionally, for both algorithms pre-

sented in this paper, we use the random shift method de-

scribed in [4].

4. NUMERICAL RESULTS

We have tested our algorithm with the same synthetic setup

as in Fig. 2 of [4], using Matlab. The 256 × 256 camera-

man image was convolved with a 9 × 9 uniform blur kernel.

Zero-mean white Gaussian noise with variance σ2 = 0.308
was then added to the result. We used the same initial esti-

mate as in [4]. The only difference is that, instead of Haar

1Here [v]j stands for the projection on the jth subspace of a vector v.
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Fig. 2. SNR improvement in dB as a function of the iteration

number, for the thresholded Landweber algorithm (TL) and

its faster implementation (FTL).

wavelets, we use Shannon wavelets for regularization. Fig.

2 shows the SNR improvement curves during the execution

of both algorithms. It is seen that a few tens of iterations of

the fast thresholded Landweber (FTL) algorithm are almost

equivalent to 600 iterations of the classical one (TL).

Table 1 presents more extensive results on how many iter-

ations are needed for both algorithms to reach a given SNR

level. The experiments were performed on the cameraman

and MRI images, with the same blurring kernel, at various

noise levels. The latter are expressed in terms of BSNR, that

is, the signal to noise ratio with respect to the blurred version

of the original signal. In each case, we have taken as reference

the SNR improvements achieved after 10 and 30 iterations of

the FTL algorithms. The results are promising and we are cur-

rently implementing the 3D version of the algorithm to test it

on real micrographs.

Cameraman

BSNR SNRI FTL TL SNRI FTL TL

20 2.36 10 98 2.39 30 198

30 2.78 10 23 2.85 30 83

40 4.77 10 113 4.83 30 134

50 6.75 10 505 7.29 30 818

MRI

BSNR SNRI FTL TL SNRI FTL TL

20 3.64 10 58 3.88 30 200

30 5.79 10 44 5.90 30 55

40 8.64 10 290 8.71 30 304

50 9.58 10 851 11.81 30 > 1000

Table 1. Number of iterations required to reach a given level

of SNR improvement (SNRI).

5. CONCLUSION

At high SNR levels, the accelerated thresholded Landweber

algorithm is more than 10 times faster than the classical one.

This makes a state-of-the-art regularization method more ac-

cessible for deconvolving large datasets, such as 3D time

lapse images of biological samples. Moreover, the acceler-

ated algorithm is simple to implement: compared to the ex-

isting one, it essentially consists in adapting the step size and

thresholding parameter for each wavelet subband.

We have shown that the derivation of the bound optimiza-

tion algorithm is relatively straightforward when the regular-

ization term is expressed in a Shannon wavelet basis. Future

work will be concerned with

1. the derivation of similar bounds for cost functions that

are regularized in other wavelet bases;

2. the theoretical estimation of the achievable acceleration;

3. the 3D implementation and application to real data.
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