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ABSTRACT

Fast MR imaging techniques often exploit the redundancy

present in an underlying MR image time series to compen-

sate for k-space undersampling. When imaging motion using

techniques like HARP, DENSE, and phase contrast (PC), it is

the phase in static regions that is constant and therefore redun-

dant. In this paper, we present a technique that first estimates

the phase in the static portion of an undersampled MR im-

age time series and then uses a partial Fourier reconstruction

technique to combine phase in the static portion and under-

sampled data to reconstruct the full image time series. The

technique is illustrated using a computational phantom under-

going simulated cardiac motion and imaged using the HARP

protocol. Results demonstrate a gradual degradation of accu-

racy with loss of data due to undersampling, indicating that a

25% speedup in imaging time is possible for an image time

series in which 50% of the pixels correspond to the object that

do not move over time.

Index Terms— MRI, Partial Fourier MR image recon-

struction, rFOV, HARP.

1. INTRODUCTION

Fast MR imaging techniques often exploit the redundancy

present in an underlying MR image time series (hereafter re-

ferred to as an image series) in order to compensate for data

undersampling. Since MR imaging data is acquired in k-

space (Fourier space), undersampling is accomplished by omit-

ting k-space lines during acquisition. In such cases, data re-

dundancy is exploited in order to compensate for the under-

sampled Fourier data.

One class of fast MR imaging techniques, referred to as

partial Fourier MR image reconstruction (PFR) techniques [1,

2], can reduce data acquisition time by up to a factor of two.

The ideal form of these techniques assumes that the underly-

ing MR image is real-valued and use the conjugate symmetry

property of real-valued signals to reconstruct the image from

half of its Fourier data. In practice, however, MR images are

complex-valued; for example, image phase can be caused by

This work is supported by NIH/NHLBI research grant (R01HL47405)

B0-field inhomogeneity and object susceptibility variations.

Therefore, practical PFR techniques acquire one half of the

k-space and additional samples of the low frequency portion

of the other half of k-space. These methods then estimate the

image phase from the low frequency samples (both halves of

k-space), remove the phase of the whole data, and then fill

in the remaining Fourier samples using conjugate symmetry.

Images are reconstructed by inverse Fourier transforming the

augmented data.

Reduced field of view (rFOV) techniques [3–6] represent

another class of fast MR imaging techniques that make use of

redundancy in the MR image series. The idea is to use the

fact that in typical image series — e.g., for imaging motion

or perfusion — only a part of the field of view is changing,

that is the dynamic part. Over the course of an entire image

series, therefore, there is redundant Fourier data representing

that part of the images that does not change over time, that

is the static part. Accordingly, these techniques first estimate

the static portion of the image using data acquired over the

whole image series. Then, Fourier data from each time instant

is used together with knowledge of the static portion (which is

unchanging) to estimate the dynamic portion of the image at

that time instant. Data reduction is possible because the static

portion is effectively imaged a bit at a time over the whole

image series.

In this paper, we present a technique for fast imaging in-

volving MR protocols that measure motion using phase-based

techniques, such as HARP [7], DENSE [8] and phase con-

trast [9]. In these approaches, phase is used to store the dis-

placement [7, 8] or velocity [9] of tissues, and it is therefore

the phase that remains constant in static tissues, even though

the magnitude may be changing in these regions. Our tech-

nique belongs to both PFR and rFOV classes of fast MR imag-

ing techniques. As in rFOV techniques, our method first es-

timates the image phase in the static portion. We then use

a novel PFR technique to reconstruct the MR image when

the phase is known over part of the image. We demonstrate

the application of our technique using a computer simulation

that mimics the acquisition of MR tagging data of the heart.

Results show that 25% reduction of data is possible without

significant loss of accuracy when 50% of the data is static.
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2. THEORY

MR scanners acquire data in the Fourier transform domain

or k-space of the underlying object, and images are recon-

structed using an inverse Fourier transform operation. The

two cardinal directions in k-space are referred to as the phase

encode and frequency encode directions. A single phase en-

code acquisition corresponds to a line of k-space in the fre-

quency encode direction, i.e., a row in k-space. A phase en-

code acquisition is normally assumed to be acquired instanta-

neously since it occurs fast relative to the motion of the under-

lying object. Fast MR imaging techniques aim to reconstruct

MR images from fewer numbers of phase encode lines than

would normally be required.

We describe our method in two parts. First, we present

a matrix formulation that is used to reconstruct images from

reduced Fourier data coupled with knowledge of the locations

of both the static and dynamic portions of the images. Then,

we describe an approach to estimate the phase of the static

portion of the image.

2.1. Matrix Formulation

For the acquisition protocol described above, each row of k-

space can be inverse Fourier transformed (one-dimensional)

immediately upon acquisition because each row contains dense

Fourier samples. Application of the 1-D Fourier transform

to the columns cannot be immediately applied, however, be-

cause there are missing rows. For the assumed scenario, the

problem we are solving is one-dimensional, since it can be

applied to each column separately. In its simplest form, the

static regions correspond to a collection of rows, which means

the same solution applies to each column in k-space. This is

the situation that we assume here, though it is straightforward

to formulate a solution that would apply to more complicated

static regions.

We aim to reconstruct f(x), a column of the underlying

image from its Fourier transform F (k) using

F (k) =
N−1∑

x=0

f(x)e−j2πkx/N (1)

We rewrite the above expression in matrix form as

F = M f (2)

where F = [F (0), F (1), . . . , F (N − 1)]T ,

f = [f(0), f(1), . . . , f(N − 1)]T ,

and M = [mkx = e−j2πkx/N ].
Let θ(x), x = 0, . . . , N − 1, denote an estimate of phase

over the given column of an image. Since, the phase estimate

(see next section) is reliable only over the static portion of the

image, it follows that

Im{f(x)e−jθ(x)} = 0 x ∈ static part . (3)

Eq. (2) should be satisfied wherever we observe a Fourier

sample, and Eq. (3) should be satisfied in the static part of the

image. The following minimization problem captures these

goals in the first two terms and provides a regularization in

the third term:

min
f

‖S(F − M f)‖2 + ‖ΛIm{Θf}‖2 + δ‖f‖2 (4)

Here, Θ is a diagonal matrix with diagonal entries e−jθ(x),

x = 0, . . . , N − 1; S is a diagonal matrix with kth diagonal

entry equals 1 if F (k) is sampled, 0 otherwise; Λ is a diagonal

matrix with xth diagonal entry equals λ if x belongs to static

portion, 0 otherwise. The solution to Eq. (4) can be found by

solving the following linear system:
⎡

⎢⎢⎢⎢⎣

Re{F}
Im{F}

0
0
0

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

SRe{M} −SIm{M}
SRe{M} SIm{M}
ΛIm{Θ} −ΛRe{Θ}

δI 0
0 δI

⎤

⎥⎥⎥⎥⎦

[
Re{f}
Im{f}

]

(5)

This formulation is similar to one proposed by Bydder et al.

[10]. The difference is that here Λ is spatially varying and M
is a matrix of DFT coefficients instead of an aliasing matrix.

2.2. Phase Estimation

Phase estimation plays an important role in PFR techniques

since incorrect phase estimation will introduce errors and ar-

tifacts in the reconstructed images. Conventionally, PFR tech-

niques estimate phase over an image by low pass filtering the

acquired data at each time instant. This type of phase esti-

mation accounts for only slowly varying component of phase,

i.e., phase arising mainly due to B0 field inhomogeneity.

Here, we estimate phase by forming an image that is the

average from the series of acquired data. Consider the se-

ries of data acquired at each location in k-space. We assume

that our k-space sampling pattern yields at least one sample

at each k-space location over the image series data acquisi-

tion process. The average k-space value over the entire time

series is computed at each k-space location, forming an av-

erage Fourier transform image. An “average image” is then

computed by inverse Fourier transform, and a phase estimate

within the static region is extracted by the usual arctan opera-

tion.

This procedure works since averaging complex data hav-

ing the same phase preserves the phase. This happens in the

static region, but not in the dynamic region.

3. SIMULATION METHODS

We use a cardiac motion and MR tagging simulator software

package to study the performance of the proposed method

[11]. Cardiac motion is modeled over one heart beat to gener-

ate a tagged cardiac MR image series comprising 16 cardiac

621



Fig. 1. Tagged image at 8th time frame showing the static and

dynamic parts of the image.

Fig. 2. (a) Estimated phase from the average image when

25% of the data discarded to reconstruct an image. (b) True

phase of the image at the 8th time frame.

phases. Each cardiac phase image is of size 256 × 256 with

FOV 28 cm and tag spacing of 6 mm. The HARP technique

for estimating cardiac motion requires k-space data around

only one of the spectral peaks (in each of two orientations) in

k-space [7]. In the FastHARP protocol of [12], a 32×32 win-

dow of k-space around one of the spectral peak is assumed to

be acquired at each time instant. We aim to further reduce this

data by not acquiring few phase encode lines during temporal

acquisition. Our simulation uses a bit-reversed cartesian k-

space sampling pattern to select the phase encode lines used

to generate the undersampled data (cf. [13]). The amount of

data discarded while reconstructing an MR image is varied

from 0%–37.5% in our simulation. Fig. 1 shows the 8th time

frame of the simulated tagged MR image series. We define

the central one half of the rows in each image to be the dy-

namic portion and remaining rows to be static. We set λ = 10
and δ = 0.1 for image reconstruction.

4. RESULTS AND DISCUSSION

Fig. 2(a) shows the estimated phase from the average image

when 25% of the data is discarded; this should be compared

to the true phase, shown in Fig. 2(b). Ignoring the background

(where it is impossible to get a reliable phase estimate), it can

Fig. 3. Percent error in the reconstructed image plotted

against the percent of k-space discarded. The error bars repre-

sent +/- standard deviation of error over the whole time series.

Fig. 4. Original and reconstructed a) Phase and b) Magnitude

of pixel in the static and dynamic part of the image.

be observed that the phase estimate is reliable in the static

portions but in error in the dynamic region (where the “heart”

is). Our method is then used to reconstruct the full image se-

ries for a set of different data loss scenarios. Fig. 3 shows the

percentage of image energy that is in error plotted against the

percentage of data that is discarded. Note that since 50% of

the data is static and phase contributes 50% of the information

about a complex number, we would expect that reconstruction

is possible up to a loss of 25% of the data. As shown in Fig-

ure 3, there is only 7.8% error when 25% of data is discarded.

Although errors do not increase dramatically when even more

than 25% of the data is discarded, visual inspection shows

the presence of aliasing in the reconstructed images. Figure 4

shows the estimated and true magnitude and phase of two pix-

els in the image when 25% of the data is discarded. One pixel

is in the “myocardium”, which is moving and in the dynamic

part of the image. The second pixel is in unmoving “tissue”
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Fig. 5. x and y displacement of a point in the myocardium

from original and reconstructed image series. A 5 times am-

plified error between the two displacements is also shown.

within the static part of the image. Overall, it is observed

that the magnitudes and phases are reconstructed very accu-

rately. Larger errors are observed at the 4th and 12th time

frames are observed, however. This is because the particular

k-space sampling pattern that we used yields a matrix [see

Eq. (5)] with a larger condition number at these time frames.

This error can potentially be reduced by using higher value

of δ at these time instants. HARP tracking is used to com-

pute the motion of a point in the myocardium of the heart,

i.e., in the dynamic portion of the image. Fig. 5 compares the

true displacements (x and y) of the point against the estimated

displacements when 25% of the data is discarded. The HARP

tracking algorithm is iterative, and we used 1/100 = 0.01 pixel

as a stopping criterion (this is customary). It is observed from

Fig. 5 that the error is within the accuracy of our stopping

criterion.

5. DISCUSSION AND CONCLUSION

We presented a fast MR imaging reconstruction algorithm

for imaging protocols in which phase is expected to be con-

stant over a static portion of the image time series. Our ap-

proach combines partial Fourier reconstruction concepts with

reduced field of view techniques. A novel matrix inversion

approach is developed to estimate a complete time series of

images from partial Fourier information acquired over the

time frames. A computer simulation demonstrates that 25%

reduction in imaging time is possible for a 50% static part

without significant loss of image reconstruction accuracy.

We demonstrated the the proposed technique for the HARP

MRI protocol; it is suitable for DENSE and phase contrast as

well. Our demonstration showed speedups for a bit-reversed

cartesian sampling pattern; but alternate patterns, such as ra-

dial and spiral sampling trajectories, would work as well.
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