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ABSTRACT improve the results, they are not accurate and reliableginou
We propose a method for epicardial segmentation in dynami¢et. In particular, shape variability among differentecand
MR sequences using priors on shape, intensity, and dynard!so the displacement of organs with respect to each otlder an
ics. The prior models are built from a training set of man-With respect to the scanner at different scanning timese pos
ually segmented sequences. The dynamics of the heart aftgnificant challenges to the use of shape priors. Also, in-
background intensities are modeled with linear autoresires  tensities inside and outside of the heart often have sigmific
models whose parameters are learnt from training data ar@verlap in cardiac MR images, which poses challenges to the
then used as priors for segmentation purposes. The seginentse of intensity priors. This has motivated the use of dynam-
training shapes are registered with respect to a common reffs as an additional cue for segmentation [14].
erence. Each registered shape is represented with a signed In this paper, we propose a method to segment the epi-
distance function, and a statistical shape model is leaingu  cardium in dynamic MR sequences, using priors on shape,
PCA on these functions. Segmentation is achieved by minhtensity, and also dynamics. We model different regiorta wi
imizing a spatial-temporal generalization of the Mumford-autoregressive (AR) models, and extract probability diistr

Shah energy functional in a level set framework. tions for the AR parameters in different regions. We use this
information as well as information about the shape and inten
1. INTRODUCTION sities in different regions to perform the segmentatiok.tas

Over the past few years, significant attention has been di- 2. PRIORSON INTENSITY AND DYNAMICS

rected to the automatic segmentation of cardiac imagegusin

prior models on intensity and shape. In order to build prior models for the intensity and dynamics
In the case of intensity-based image Segmentation, one @f the heart and the background, we describe the intensity of

the most common methods seeks to find a piecewise smoo&pixel as the output of an AR model. Consideringonsec-

approximation of the image by minimizing the Mumford-Shattive frames in a video sequence, we assume that the intensit

energy functional [1]. In the case of a piecewise constant a°f every pixel in each frame is related to the intensitieshef t

proximation, an imagé(z, y) is segmented into two regions Same pixel in previous frames by an AR model of orgler

by finding a smooth contou€;, and the mean intensities in- P

side and outside this contour. Explicit methods [2] repnése If(z) = Ip(z) + Z ai(x)Ir—i(x) — Ip(x)), (1)

C with a finite number of control points which are evolved to i=1

match the boundaries in the image. Implicit methods [3, 4, 5]whereIf(:1:) is the intensity of pixelz in the f** frame, and

knowr? as _Ie_vel set_meth(_)ds, represemas the zero level set Ip(x) is the mean intensity of pixet in the F consecutive

of an implicit functionp, i.e. €' = {(z,y) : ¢(z,y) = 0},  frames, Rewriting equation (1) for all the frames in a tenapor

and evolve this function to match the boundaries in the imag‘?/vindow of sizeF, and substituting; () — Ir-(z) with I (z)
Level set methods are nowadays widely used in cardiac_ | = yield's the matrix equz;tion e

image segmentation, because they result in coherent egion

with smooth boundaries. While earlier work used edge-based a(z)®r(z) = Ur(z), 2
features for segmentation [6, 7], more recent work Combineﬁlhere

edge and region-based features with prior knowledge [8jv-Ho

ever, epicardial segmentation in MR images can be very chal- L 2 JF-p

lenging due to lack of well defined edges, lack of contrast, | Bl@) I(x) - Tpo,p(2) 3

existence of different textures, inhomogeneities, na@se, r(x) = : : : S
Recent work has tried to overcome these problems by us- I(x) I, (x) I (x)

ing priors on the shape and appearance of the region of inter-
est[9, 10, 11, 8, 12, 13]. Although these methods signifigant a(@)=[ ap(x) ap1(x) - a(x) |, and (4



Up(z) = La(x) Lys(x) - Ip(@)]. (5) whereV,I(z) = [Ioxs Rz ha] " V.I(2). In our
experiments, this simple least squares method is suffifaent
the registration of the binary true masks.

a(x) = UF(m)ch(m)T(@F(m)@F(m)T)*I. (6) A]_‘ter aligning the true masks, we build a signed_distance

) N _ function (sdf) for every registered true mask. An sdf is acfun

However, singularities could occurdfr(z) is not full rank.  tion defined on the image plane, which gives the signed dis-
This could happen, e.g., when a pixel has almost constant ifance of any point on the image to a specific closed contour
tensity in the” consecutive frames, or wheis too smallto  gych that the points inside the contour have negative distan
we are interested in choosirfgas small as possible to avoid The so-computed sdf’s are then used for building a sta-
the F' frames, we add a regularization term to the least squargpCA). That is, we write the sdf; () corresponding to the

The least squares solution to equation (2) is given by

problem. Instead of minimizinfja(z)® r () — Up(x)||?, we j*" shapej = 1,..., N, as

minimize | a(x)® r(x) — Ur(z)|2 +n|la(z)|?. The new so- .

lution for the AR parameters is given by 6,(x) = dol@) + Z (@), (10)
=1

a(@) = Up(x)®r(@) (Pr(@)@r(@)" +1lpp) " (7)
Given atraining set of manually segmented video sequenvyh?irsg?o E'j)n;zctiréi r(;esﬁaoga\llgr?;izif sg:;’ '_ 'é;ﬁfh:rghtgee
ces of a beating heart, we can calculate the AR parameters forP P P , ang P

L : . - . coefficients. In theory, sdf's are functions on a continuous
every pixel in the image using a sliding temporal window of ; : P
: ) . domain. However, as the number of pixels is finite, we can
size . With all the AR parameters in hand, we can now

build two sets of histograms of mean intensity and AR pa_approxmate the sdf’s by their values on a finite grid. More

ot ‘ P L
rameters for the heart and the background, respectively. \/\%D ?;;f;%a:lzi llgt(pijxeelsli $ﬁeﬁ1v\?v(§?:;(r:10:(:?r:m3tgettuz :‘/L?rlllz:?:)r?:];
use these histograms as the prior probability distributioi- J P ‘ ' P

tions (pdf’s) for the intensity and dynamics of the regions. vi's by applying PCA to the matrix
S=[¢1 @2 .. on | eRN (11)

We choose the number of principal componentssing the

In order to capture the shape variability among all the 515|apemOdeI selection formula [15]

in our training set, we first align all the shapes in the trani n— aremin ojr1’ T (12)
set using similarity transformations. For this step, wereep o j:ﬁ,, N Z'Zﬂ 02 I

sent the shapes with binary images which are white on the -

heart and black on the background (true masks). We thewhereo; is thei*" singular value ofs andx is a parameter.
extract the remaining variability using PCA on the space of Note that the space of sdf’s is not a linear manifold. This
shapes, and capture the dominant modes of shape variati6@n €asily be seen by noting that the summation of two sdf's

3. PRIORSON SHAPE

by using the first few principa| Components_ need not be an sdf. Therefore, by dOing PCA on this manif0|d,
For the first step, we register imagér) to imagel(z), ~ We are using a linearization of the manifold aroundx).
by minimizing the least squares energy functional However, since we previously registered the shapes, devia-
tions of the shapes from,(x) are not significant, and the
Baign = %/(f(;i) — I(x))*dz. (8) linearized manifold is a good approximation.

In equation (8);1; — [I y}T are the coordinates df, and 4. SEGMENTATION USING DYNAMICAL PRIORS

z=[z 7 " are the transformed coordinatesiofia a sim-
ilarity transformationz = hRx + ¢, whereh € R,

_ | cosf® —sinf
" | sinf cosé

Given F' new frames, we can use the prior shape model to
parameterize the contour as the zero level set of the functio

] € SO(2), andt = [ o ] € R?

t, ¢(@) = ¢o(hRx +t)+ Y _aipi(hRz +1t),  (13)

. . . i=1
are the scale, rotation matrix, and translation vectopees ’

tively. We minimize E,;4,, using gradient descent with re- whereh, 0, andt_, are the pose parameters, and - - o, are
the shape coefficients. The optimal contour for th&rames

o
spect to the pose parametgrs= | &y &, h 6] . The can be found by maximizing the log-likelihood function

gradient ofE,;;4, With respect tg is given by
N N fur = log prob(intensity and AR parameters of tiiéframes
VpFEalign = /(I(:i) —I(x))Vpl(2), 9) |h,0,t, a1 - - ). (14)
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Fig. 1. Histograms of intensity and AR parameters for the regiameesponding to inside and outside of the heart

(a) 1% slice (b) 27 slice (c) 3" slice (d) 4" slice (e) 5t slice () 6t slice (g) 7" slice

Fig. 2. Segmentation results. Green contour: initializatiomgsgi,. Red contour: final segmentation.

Notice that maximizingfy,, is equivalent to minimizing whereV,¢(x) = [IQX2 Rx h%—fgw]T Vaed(x). Vo Err,
the gradient o, with respect tax, is given by

Eyp =—fur = P
_ /10gpm(uo(fl3),a1(w), . ,ap(w))(l _ H(¢(m)))dm /bg P (uo(z), a1(x), -, ap(x))d(¢(z)) Vao(z), (17)
whereV o ¢(x) = ¢ (hRx + t), and

W = [1(hRx + t)po(hRx +t) - - b, (hRx +t)] . (18)

— /1og Pout(uo(x),a1(x),- - - ,ap(:v))H(¢(:B))dw.
(15)

The functionsp and H (¢) are the sdf and the heaviside func- 5. EXPERIMENTAL RESULTS

tion respectively, corresponding to the current contéliip) _ o )

is a binary function which is 1 wher¢ > 0, and 0 where N our experiments, we use a dgtasgt containing 7 video se-
¢ < 0. Py, andP,,, are the joint pdf's of the intensity and dUences corresponding to 7 aX|aI.sI|ces of the heart. Each
AR parameters for the heart and the background, respectivelVideo sequence has 30 frames of iz x 128 spanning over

In practice, we do not have access to these probabilityidistrON€ complete beating cycle. For every slice, we use frames 1-
butions. We only have histograms for the intensity and ARS: 11-15 and 21-25 for training, and the rest for testing.
parameters computed from the training set. We use the his- Figure 1 shows the histograms of intensity and AR param-
tograms of these parameters as their individual pdf's. Wa th €ters for the heart and the background. Figure 2 shows our
use the product of the individual pdf’s as their joint pdf; as S€gmentation results for various slices of the datasettcellot
suming that they are independent. We also assume that tifaat the method works almost perfectly on the basal slices.
pixels are independent of each other, tiis and P, are O_n the other hand, the algqrithm loses accuracy on the__apical
defined independently at each pixel. slices, because on these slices, the variations of heansint

We find the optimal pose parameteps,and the optimal ties are less significant than in the basal slices, and theref
shape coefficients = [a1, - - - o, ] T by minimizing By, us- comparable to intensity variations due to noise and atsfac
ing gradient descent. The optimal segmentation is themgive SOme neighboring regions. However, the apical slices are
by substituting the optimal parameters in (18), Ey; 1., the not particularly important during catheterization progess,

gradient ofE,, 1, with respect te, is given by which are the main application of this work.
In order to give the reader a better way to evaluate our re-

Pin sults, we provide numerical results for some intuitive aritd c
1 ) y Ty 0 \Y ) 16 . ’ .. . . .
/ 8 Pt (uo(®), a1(2) a(2)3($(@) Vré(@), (16) ical quantities that are illustrated in Figure 3(a). We defime
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Fig. 3. (a) Demonstration of TP and FP. (b) Statistics of the resulien initialized withp,. (c) Statistics of the results with
various initializations. (d) Comparing our method (IAR)Yses the method without AR priors (I) when initialized with.

True Positive Fraction for every image &5, and the False

Positive Fraction a%. We perform two different types of
experiments. First, for every slice in our testing set, we ru
our algorithm with the mean shape as initialization. Figure
3(b) shows the mean statistics for the results on the 7 slices (2]
Second, we segment the images initialized with a transfdrme
version of the mean shape. We use similarity transformation
using all the combinations given by. € {—10,0,10} pix-
els,t, € {—10,0,10} pixels,§ € {—90,0,90} degrees, and

h € {.8,1,1.2}. Figure 3(c) shows the mean statistics of
the results of this experiment for the 7 slices. Note that our [5]
method is highly robust to initialization.

We also tested a simplified version of our method in which
we do not include AR parameter priors. This method is simi-
lar to the method in [13], except that we do not put any prob-
ability distribution on the shape priors. As can be seengn Fi
ure 3(d), using AR parameters significantly improves the tru
positive fraction of the results, although it increasesféisee
positive fraction in apical slices. However, note that we ar
more concerned about the true positive fraction. We do not (g
want to miss any part of the heart at this stage, becausd it wil
result in further inaccuracy of the automatic segmentation
subdivisions of the heart that might follow our algorithm.
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6. CONCLUSIONSAND FUTURE WORK (10]

We have presented an algorithm for epicardial segmentatiof!!
in dynamic cardiac MR sequences that uses priors on shape,
intensity and dynamics. Our results showed that priors en dy
namics indeed improve segmentation results. We also showeld?
results on very challenging apical slices that are usustjced.
In the future, we plan to extend our algorithm to 3D volumes.
This will help us get better results on apical slices, beeatus
will enable us to use the information from adjacent slices.
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