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ABSTRACT
We propose a method for epicardial segmentation in dynamic
MR sequences using priors on shape, intensity, and dynam-
ics. The prior models are built from a training set of man-
ually segmented sequences. The dynamics of the heart and
background intensities are modeled with linear autoregressive
models whose parameters are learnt from training data and
then used as priors for segmentation purposes. The segmented
training shapes are registered with respect to a common ref-
erence. Each registered shape is represented with a signed
distance function, and a statistical shape model is learnt using
PCA on these functions. Segmentation is achieved by min-
imizing a spatial-temporal generalization of the Mumford-
Shah energy functional in a level set framework.

1. INTRODUCTION

Over the past few years, significant attention has been di-
rected to the automatic segmentation of cardiac images using
prior models on intensity and shape.

In the case of intensity-based image segmentation, one of
the most common methods seeks to find a piecewise smooth
approximation of the image by minimizing the Mumford-Shah
energy functional [1]. In the case of a piecewise constant ap-
proximation, an imageI(x, y) is segmented into two regions
by finding a smooth contour,C, and the mean intensities in-
side and outside this contour. Explicit methods [2] represent
C with a finite number of control points which are evolved to
match the boundaries in the image. Implicit methods [3, 4, 5],
known as level set methods, representC as the zero level set
of an implicit functionϕ, i.e. C = {(x, y) : ϕ(x, y) = 0},
and evolve this function to match the boundaries in the image.

Level set methods are nowadays widely used in cardiac
image segmentation, because they result in coherent regions
with smooth boundaries. While earlier work used edge-based
features for segmentation [6, 7], more recent work combines
edge and region-based features with prior knowledge [8]. How-
ever, epicardial segmentation in MR images can be very chal-
lenging due to lack of well defined edges, lack of contrast,
existence of different textures, inhomogeneities, noise,etc.

Recent work has tried to overcome these problems by us-
ing priors on the shape and appearance of the region of inter-
est [9, 10, 11, 8, 12, 13]. Although these methods significantly

improve the results, they are not accurate and reliable enough
yet. In particular, shape variability among different slices, and
also the displacement of organs with respect to each other and
with respect to the scanner at different scanning times, pose
significant challenges to the use of shape priors. Also, in-
tensities inside and outside of the heart often have significant
overlap in cardiac MR images, which poses challenges to the
use of intensity priors. This has motivated the use of dynam-
ics as an additional cue for segmentation [14].

In this paper, we propose a method to segment the epi-
cardium in dynamic MR sequences, using priors on shape,
intensity, and also dynamics. We model different regions with
autoregressive (AR) models, and extract probability distribu-
tions for the AR parameters in different regions. We use this
information as well as information about the shape and inten-
sities in different regions to perform the segmentation task.

2. PRIORS ON INTENSITY AND DYNAMICS

In order to build prior models for the intensity and dynamics
of the heart and the background, we describe the intensity of
a pixel as the output of an AR model. ConsideringF consec-
utive frames in a video sequence, we assume that the intensity
of every pixel in each frame is related to the intensities of the
same pixel in previous frames by an AR model of orderp

If (x) = ĪF (x) +

p
∑

i=1

ai(x)(If−i(x) − ĪF (x)), (1)

whereIf (x) is the intensity of pixelx in thef th frame, and
ĪF (x) is the mean intensity of pixelx in theF consecutive
frames. Rewriting equation (1) for all the frames in a temporal
window of sizeF , and substitutingIi(x)− ĪF (x) with I ′i(x),
i = 1 · · ·F , yields the matrix equation

a(x)ΦF (x) = UF (x), (2)
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, (3)

a(x) =
[

ap(x) ap−1(x) · · · a1(x)
]

, and (4)



UF (x) =
[

I ′p+1(x) I ′p+2(x) · · · I ′F (x)
]

. (5)

The least squares solution to equation (2) is given by

a(x) = UF (x)ΦF (x)
⊤

(ΦF (x)ΦF (x)⊤)−1. (6)

However, singularities could occur ifΦF (x) is not full rank.
This could happen, e.g., when a pixel has almost constant in-
tensity in theF consecutive frames, or whenF is too small to
allow the intensities of a pixel to have enough variation. Since
we are interested in choosingF as small as possible to avoid
significant displacements of the boundary of the heart within
theF frames, we add a regularization term to the least squares
problem. Instead of minimizing‖a(x)ΦF (x)−UF (x)‖2, we
minimize‖a(x)ΦF (x)−UF (x)‖2+η‖a(x)‖2. The new so-
lution for the AR parameters is given by

a(x) = UF (x)ΦF (x)⊤(ΦF (x)ΦF (x)⊤ + ηIp×p)
−1. (7)

Given a training set of manually segmented video sequen-
ces of a beating heart, we can calculate the AR parameters for
every pixel in the image using a sliding temporal window of
sizeF . With all the AR parameters in hand, we can now
build two sets of histograms of mean intensity and AR pa-
rameters for the heart and the background, respectively. We
use these histograms as the prior probability distributionfunc-
tions (pdf’s) for the intensity and dynamics of the regions.

3. PRIORS ON SHAPE

In order to capture the shape variability among all the shapes
in our training set, we first align all the shapes in the training
set using similarity transformations. For this step, we repre-
sent the shapes with binary images which are white on the
heart and black on the background (true masks). We then
extract the remaining variability using PCA on the space of
shapes, and capture the dominant modes of shape variation
by using the first few principal components.

For the first step, we register imagẽI(x) to imageI(x),
by minimizing the least squares energy functional

Ealign =
1

2

∫

(Ĩ(x̃) − I(x))2dx. (8)

In equation (8),x =
[

x y
]⊤

are the coordinates ofI, and

x̃ =
[

x̃ ỹ
]⊤

are the transformed coordinates ofĨ via a sim-
ilarity transformatioñx = hRx+ t, whereh ∈ R

+,

R =

[

cos θ − sin θ
sin θ cos θ

]

∈ SO(2), andt =

[

tx
ty

]

∈ R
2

are the scale, rotation matrix, and translation vector, respec-
tively. We minimizeEalign using gradient descent with re-

spect to the pose parametersp =
[

tx ty h θ
]⊤

. The
gradient ofEalign with respect top is given by

∇pEalign =

∫

(Ĩ(x̃) − I(x))∇pĨ(x̃), (9)

where∇pĨ(x̃) =
[

I2×2 Rx h∂R
∂θ
x
]⊤

∇x̃Ĩ(x̃). In our
experiments, this simple least squares method is sufficientfor
the registration of the binary true masks.

After aligning the true masks, we build a signed distance
function (sdf) for every registered true mask. An sdf is a func-
tion defined on the image plane, which gives the signed dis-
tance of any point on the image to a specific closed contour
such that the points inside the contour have negative distance,
and the points outside the contour have positive distance.

The so-computed sdf’s are then used for building a sta-
tistical shape prior model using principal component analysis
(PCA). That is, we write the sdfφj(x) corresponding to the
jth shape,j = 1, . . . , N , as

φj(x) = φ0(x) +
n

∑

i=1

αijψi(x), (10)

whereφ0(x) is the mean of all the sdf’s,ψ1, . . . , ψn are the
n principal modes of shape variation, andαij are the shape
coefficients. In theory, sdf’s are functions on a continuous
domain. However, as the number of pixels is finite, we can
approximate the sdf’s by their values on a finite grid. More
specifically, letϕj ∈ R

P be a vector containing the values of
φj(x) for all P pixelsx. Then, we can compute the functions
ψi’s by applying PCA to the matrix

S =
[

ϕ1 ϕ2 ... ϕN

]

∈ R
P×N . (11)

We choose the number of principal componentsn using the
model selection formula [15]

n = argmin
j=1,··· ,N

σj+1
2

∑j

i=1
σi

2
+ κ · j, (12)

whereσi is theith singular value ofS andκ is a parameter.
Note that the space of sdf’s is not a linear manifold. This

can easily be seen by noting that the summation of two sdf’s
need not be an sdf. Therefore, by doing PCA on this manifold,
we are using a linearization of the manifold aroundφ0(x).
However, since we previously registered the shapes, devia-
tions of the shapes fromφ0(x) are not significant, and the
linearized manifold is a good approximation.

4. SEGMENTATION USING DYNAMICAL PRIORS

GivenF new frames, we can use the prior shape model to
parameterize the contour as the zero level set of the function

φ(x) = φ0(hRx+ t) +

n
∑

i=1

αiψi(hRx+ t), (13)

whereh, θ, andt, are the pose parameters, andα1 · · ·αn are
the shape coefficients. The optimal contour for theF frames
can be found by maximizing the log-likelihood function

fML = log prob(intensity and AR parameters of theF frames

|h, θ, t, α1 · · ·αn). (14)
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Fig. 1. Histograms of intensity and AR parameters for the regions corresponding to inside and outside of the heart

(a) 1st slice (b) 2nd slice (c) 3rd slice (d) 4th slice (e) 5th slice (f) 6th slice (g) 7th slice

Fig. 2. Segmentation results. Green contour: initialization usingφ0. Red contour: final segmentation.

Notice that maximizingfML is equivalent to minimizing

EML = −fML =

−

∫

logPin(u0(x), a1(x), · · · , ap(x))
(

1 −H
(

φ(x)
)

)

dx

−

∫

logPout(u0(x), a1(x), · · · , ap(x))H
(

φ(x)
)

dx.

(15)

The functionsφ andH(φ) are the sdf and the heaviside func-
tion respectively, corresponding to the current contour.H(φ)
is a binary function which is 1 whereφ ≥ 0, and 0 where
φ < 0. Pin andPout are the joint pdf’s of the intensity and
AR parameters for the heart and the background, respectively.
In practice, we do not have access to these probability distri-
butions. We only have histograms for the intensity and AR
parameters computed from the training set. We use the his-
tograms of these parameters as their individual pdf’s. We then
use the product of the individual pdf’s as their joint pdf, as-
suming that they are independent. We also assume that the
pixels are independent of each other, thusPin andPout are
defined independently at each pixel.

We find the optimal pose parameters,p, and the optimal
shape coefficientsα = [α1, · · ·αn]⊤ by minimizingEML us-
ing gradient descent. The optimal segmentation is then given
by substituting the optimal parameters in (13).∇pEML, the
gradient ofEML with respect top, is given by

Z

log
Pin

Pout

(u0(x), a1(x), · · · , ap(x))δ(φ(x))∇pφ(x), (16)

where∇pφ(x) =
[

I2×2 Rx h∂R
∂θ
x
]⊤

∇xφ(x). ∇αEML,
the gradient ofEML with respect toα, is given by

Z

log
Pin

Pout

(u0(x), a1(x), · · · , ap(x))δ(φ(x))∇αφ(x), (17)

where∇αφ(x) = ψ(hRx+ t), and

ψ = [ψ1(hRx+ t)ψ2(hRx+ t) · · ·ψn(hRx+ t)]⊤. (18)

5. EXPERIMENTAL RESULTS

In our experiments, we use a dataset containing 7 video se-
quences corresponding to 7 axial slices of the heart. Each
video sequence has 30 frames of size128×128 spanning over
one complete beating cycle. For every slice, we use frames 1-
5, 11-15 and 21-25 for training, and the rest for testing.

Figure 1 shows the histograms of intensity and AR param-
eters for the heart and the background. Figure 2 shows our
segmentation results for various slices of the dataset. Notice
that the method works almost perfectly on the basal slices.
On the other hand, the algorithm loses accuracy on the apical
slices, because on these slices, the variations of heart intensi-
ties are less significant than in the basal slices, and therefore
comparable to intensity variations due to noise and artifacts
in some neighboring regions. However, the apical slices are
not particularly important during catheterization procedures,
which are the main application of this work.

In order to give the reader a better way to evaluate our re-
sults, we provide numerical results for some intuitive and crit-
ical quantities that are illustrated in Figure 3(a). We define the



(a)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

True Positive Fraction
False Positive Fraction

(b)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

True Positive Fraction
False Positive Fraction

(c)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

True Positive Fraction−IAR
False Positive Fraction−IAR
True Positive Fraction−I
False Positive Fraction−I

(d)

Fig. 3. (a) Demonstration of TP and FP. (b) Statistics of the results when initialized withφ0. (c) Statistics of the results with
various initializations. (d) Comparing our method (IAR) versus the method without AR priors (I) when initialized withφ0.

True Positive Fraction for every image asB
A+B

, and the False

Positive Fraction as C
A+B

. We perform two different types of
experiments. First, for every slice in our testing set, we run
our algorithm with the mean shapeφ0 as initialization. Figure
3(b) shows the mean statistics for the results on the 7 slices.
Second, we segment the images initialized with a transformed
version of the mean shape. We use similarity transformations
using all the combinations given bytx ∈ {−10, 0, 10} pix-
els,ty ∈ {−10, 0, 10} pixels,θ ∈ {−90, 0, 90} degrees, and
h ∈ {.8, 1, 1.2}. Figure 3(c) shows the mean statistics of
the results of this experiment for the 7 slices. Note that our
method is highly robust to initialization.

We also tested a simplified version of our method in which
we do not include AR parameter priors. This method is simi-
lar to the method in [13], except that we do not put any prob-
ability distribution on the shape priors. As can be seen in Fig-
ure 3(d), using AR parameters significantly improves the true
positive fraction of the results, although it increases thefalse
positive fraction in apical slices. However, note that we are
more concerned about the true positive fraction. We do not
want to miss any part of the heart at this stage, because it will
result in further inaccuracy of the automatic segmentationof
subdivisions of the heart that might follow our algorithm.

6. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm for epicardial segmentation
in dynamic cardiac MR sequences that uses priors on shape,
intensity and dynamics. Our results showed that priors on dy-
namics indeed improve segmentation results. We also showed
results on very challenging apical slices that are usually avoided.
In the future, we plan to extend our algorithm to 3D volumes.
This will help us get better results on apical slices, because it
will enable us to use the information from adjacent slices.
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