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ABSTRACT

This paper presents a multi-dimensional point scatterer dis-
tribution model for the context of ultrasound image simula-
tion. The model has a simple parameterisation, has low com-
putational requirements and is flexible enough to model spa-
tial organisation of scatterers ranging from highly clustered
to nearly regular. The model extends an existing 1D model
by mapping 1D scatterer positions to a Hilbert space-filling
curve. The flexibility of the heuristic model is illustrated
through experiments where common statistical models of ul-
trasonic speckle are fitted to simulated data. The results agree
with theoretical predictions.

Index terms: acoustic imaging, simulation, fractals, statistics,
speckle

1. BACKGROUND

An ultrasound (US) image simulator is a useful validation
platform for image processing applications where ground truth
pertaining to image content or acquisition conditions is needed
but not available from US data without additional equipment.
It also serves as a test platform during application software
development when data acquisition is impossible or awkward.
Typical simulators take a list of point scatterers with their
strength and position as input along with US transducer spec-
ifications and simulate the resulting backscattered signal.
The density and spatial organisation of scatterers are two
of many factors which determine the appearance and statistics
of US speckle. In order to validate image processing applica-
tions or study image properties across different tissue types,
it is useful to be able to generate random lists of point scat-
terers with varying density and spatial organisation, ranging
from highly clustered to random to nearly regular. There is
currently a lack of models displaying such flexibility along
with computational efficiency and simple parameterisation.
The Neyman-Scott point process model has been used for
studying the effect of blood cell aggregation on ultrasonic
signals [1]. The model creates random cluster centers and
spawns daughter points surrounding them. It is not appropri-
ate for generating quasi-periodic patterns. Such patterns can
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be generated with varying regularity by perturbing a regular
point lattice [2], but this approach cannot generate clustered
point patterns. An alternative is a Gibbs-Markov area interac-
tion process which imposes pairwise repulsive and attractive
constraints between points. This model was used to study
US backscattering from aggregates of non-overlapping blood
cells [3]. This type of model is computationally demanding
and fails to produce a broad enough variety of clustered pat-
terns when no repulsive constraints are used to maintain a
minimal distance between points [4]. In short, previous at-
tempts to parameterise variation in the spatial organisation
of scatterers have been geared towards specific applications
and have not modeled the full continuum of spatial organisa-
tions ranging from clustered to regular. One notable exception
is the 1D marked regularity model of Cramblitt and Parker
[5]. This model is a generalisation of the Poisson point pro-
cess with an additional parameter which tunes the variance of
inter-scatterer spacing. Unfortunately, the model is one di-
mensional, and not suitable for 2D or 3D simulations.

This paper proposes a heuristic extension to Cramblitt and
Parker’s scatterer distribution model for the multi-dimensional
case. The proposed approach is to map the results from the
original 1D model to a Hilbert space-filling curve. It is shown
that this mapping preserves some of the statistical properties
of the 1D model. The statistics of resulting simulated images
are analysed, showing that the multi-dimensional extension
can produce a broad variety of image patterns corresponding
to commonly used parametric models of speckle statistics, in
agreement with theory.

The rest of this paper is structured as follows. Cramblitt
and Parker’s 1D model is described in section 2. The pro-
posed multi-dimensional extension is described in section 3.
The validation methods used for experiments are given in sec-
tion 4, with the results presented in section 5.

2. THE 1D MODEL

The 1D marked regularity model of Cramblitt and Parker [5]
generates a random scatterer function of the form

s(x) :Zaié(x—Xi), (D



where x denotes position on the real line and a; and X; denote
the strength and position of scatterer ¢. In this model, the
distance d; = |X; — X;+1| is gamma distributed with shape
and scale parameters « and (:

f(d) _ d* "' exp(—d/B)

e a,B,d > 0. )

This distribution can be usefully reparameterised in terms of
the mean and variance in scatterer spacing, d = o and
02 = af? = d?/a. This allows the model to be tuned
in terms of scatterer density (1/d) and regularity (controlled
by a). With a = 1, the model reduces to a Poisson point
process with exponentially distributed inter-scatterer spacing,
and scatterers are placed at random. For o < 1 (high vari-
ance), scatterers tend to group in clusters, whereas for o > 1
(low variance), scatterers become more evenly spaced.

Incidentally, an identical renewal point process model was
independently studied in the field of economic statistics [6].
In this context, it was shown that statistics on the lengths of
inter-event (inter-scatterer) intervals have a simple translation
in terms of asymptotic statistics on event counts within inter-
vals of fixed length. Specifically, as the length of the fixed
interval tends towards infinity,

E{N}

VAR{N} @ )

where N is the scatterer count and E{.} and V AR{.} are the
expectation and variance operators, respectively.

3. EXTENSION TO MULTIPLE DIMENSIONS

While the « = 1 (Poisson) case is easily generalised to multi-
ple dimensions, there is no obvious extension of the model for
other a.. A simple heuristic to generate a 2D scatterer function
would be to rearrange short segments of a 1D scatterer func-
tion on a 2D grid in a raster scan fashion. Such a mapping is
not desirable because it only preserves the spatial organisation
of the points along one direction. The raster scan mapping is
but one of many possible mappings of a line segment onto a
finite multi-dimensional space known as discrete space-filling
curves, which have the property of traversing every single
point of a discrete m-dimensional grid of a given precision.
Better results can be obtained by choosing a different type of
space-filling curve with better preservation of locality, such
that distances measured along the original line correlate well
with distances measured in the multi-dimensional space. A
good choice is the Hilbert curve, a fractal curve shown to
nearly achieve theoretical bounds in terms of preservation of
locality [7]. The Hilbert curve of precision k traverses (2%)™
points on an m-dimensional grid. Discrete approximations
of the 2D Hilbert curve for different levels of precision are
shown in figure 1.

The algorithm introduced in [9] can be used to determine
the Hilbert curve mapping of a point in 1D space to m-D

Fig. 1. Discrete approximations of the 2D Hilbert curve [8].
The level of precision of the curves increases from left to right
from 1 to 5.

space. This algorithm takes as input a fixed point mk bit rep-
resentation of the point’s position along the 1D line segment,
recursively removes m bits from the left of this input and uses
them as an index to one of 2" equally sized sub-cells within
the current cell of the m-dimensional space. The precision of
the resulting m-dimensional coordinates is equal to k. In 2D
or 3D, the process is equivalent to decoding the indexing of
cells in a quadtree or octree, respectively.

The Hilbert curve mapping is applied to each point scat-
terer in the 1D function sampled from Cramblitt and Parker’s
model, yielding a new set of scatterers in 2D or 3D whose
spatial arrangement exhibits similar characteristics to the 1D
version. This was empirically verified by generating scatter-
ing functions with different parameters 1/d and a over large
spaces in 1D, 2D and 3D, breaking these spaces into equal
numbers of equally sized non-overlapping bins and calculat-
ing the ratio of mean to variance in scatterer count over these
bins. As predicted by Eq (3), this ratio is close to « for large
bin sizes in the 1D case. In 2D and 3D, it was found that the
agreement with theory is also good provided that the statis-
tics are measured on full sub-cells of the Hilbert curve (which
themselves are Hilbert curves of lower precision). This means
that when using the (heuristic) multi-dimensional extension
of the model, one should use the data generated for an integer
number of full Hilbert curve sub-cells in order to guarantee
preservation of the 1D statistics. The agreement between the-
ory and the samples for a 262,144 unit sized space divided
into 64 bins is illustrated in figure 2. The agreement was
found to be of good quality for all values of 1/d.
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Fig. 2. Ratio of mean to variance in scatterer count versus o.
Solid line: theory, squares: 1D model samples, circles: 2D
model samples, crosses: 3D model samples.



4. APPLICATION TO US IMAGE SIMULATION

The proposed scatterer distribution model was validated on
the basis of its usefulness in the context of 2D US image sim-
ulation. The model should permit simulation of a broad vari-
ety of speckle images. The statistics of these images should
be reliably predictable from the model parameters (as with the
original 1D model) and in agreement with theoretical consid-
erations.

4.1. US speckle amplitude statistics

Theory proposes several parametric models for the statisti-
cal distribution of the US echo amplitude A. The three main
models studied in [5] were retained for this study. The first is
the Rayleigh distribution model:

f(A) = % exp(—A?/20?), 4)

where o2 reflects the variance in scatterer strength. The model
assumes a large number of scatterers distributed uniformly in
space (« close to 1), resulting in random interference between
backscattered waves.

The second model is the K distribution model:

FA) = 25 (%" Kua(b4) >0, )

where b = 2 (#)1/2 and K,_1(.) is the modified Bessel
function of the second kind and order 4 — 1. The model is
an accurate statistical description of US speckle for low scat-
terer density or high scatterer clustering (o < 1), reflected in
the additional parameter . The model reduces to a Rayleigh
distribution with parameter o for y — oo .

The third model is the Rician distribution model:
f(A) = & exp(— (A2 + s2)/20%), (25) s>0, (6)

where I(.) is the modified Bessel function of the first kind
of order 0, and the parameter s describes the amount of co-
herent scattering associated with highly organised scatterer
structures causing specular reflection and other forms of con-
structive interference. These may occur for o > 1. The model
reduces to the Rayleigh distribution model for s = 0.

4.2. Simulation and model selection

For quantitative validation, US images were simulated by con-
volving 1D and 2D scattering functions with a gated cosine
pulse, yielding a radio-frequency (RF) signal. The square
pulse envelope was chosen over a Gaussian envelope because
the former allows for better defined scatterer/resolution cell
count. The resolution cell size T" (the same in 1D and in 2D)
was chosen such that the scatterer density, in terms of scat-
terers per resolution cell, 7'/ d, varied from 5 to 50, with d
set to either 0.5 or 1.0 cycle of the cosine pulse (in 1D, these
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Fig. 3. 2D simulated images obtained with high scatterer den-

sity and increasing values of a.

correspond to destructive and constructive interference cases,
respectively). The regularity parameter o was increased from
0.1 to 30. The scatterer strengths were independently sam-
pled from a lognormal distribution with mean 1 and variance
0.1, as suggested in [5]. The amplitude signal was obtained
through envelope detection of the RF signal via the Hilbert
transform. Ten simulated images of size 10247 were gener-
ated for each combination of 7'/d, o and d.

For each of the three speckle models described earlier, a
maximum likelihood fit to the 1024 data samples at the cen-
ters of sequential image patches of size 1" was calculated. A
closed form expression for the maximum likelihood value of
o exists for the Rayleigh model. The Fletcher-Reeves con-
jugate gradient algorithm was used to optimise parameters of
the Rician distribution model. For the K distribution model,
whose log-likelihood function has complicated derivatives,
the derivative free Nelder-Mead simplex algorithm was used.

The “best” model was chosen to minimise Schwarz’s Bayes
Information Criterion (BIC) [10]:

BIC = —-2L + plogn, @)

where L is the logarithm of the likelihood function at its max-
imum, p is the number of parameters in the model analysed
and n is the number of data samples. The BIC was chosen
over a simple goodness of fit criterion because it measures
the complexity of the model in addition to its goodness of fit,
choosing simpler models over more complex ones for similar
goodness of fit levels. The BIC is particularly appropriate for
this study, where the compared models are all generalisations
of the simple Rayleigh model.

5. RESULTS

For illustration, examples of simulated ultrasound images ob-
tained with high scatterer density and varying « are shown in
figure 3. A Gaussian pulse envelope was used for realism, and
the images were logarithmically compressed for better visual-
isation. As « increases and the scatterers are more uniformly
placed, it can be seen that the images become smoother.
Figures 4 and 5 show how often each speckle model was
chosen out of then ten trials for each simulation case. For
small scatterer densities and high clustering (o < 1), the K
distribution model is preferred, in agreement with theory, both
in 1D and 2D. For random scatterer placement (o = 1), small
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Fig. 4. Number of times each speckle model was chosen out
of 10 tri7a15 for simulation cases with @ < 1. Blagk: 1D
model, d = 1.0 pulse cycle; dark grey: 1D model, d = 0.5

pulse cycle; light grey: 2D model, d = 1.0 pulse cycle; white:
2D model, d = 0.5 pulse cycle.

scatterer densities yield K distributed amplitudes, which be-
come Rayleigh distributed as the scatterer density increases.
This transition seems to occur for smaller densities in the 2D
case than in the 1D case.

The statistics of the simulated images when regular struc-
ture is present (o > 1) depend on d. In 1D, constructive inter-
ference occurs for large values of «, irrespective of scatterer
density, when d = 1 pulse cycle, yielding Rician amplitude
statistics. Destructive interference occurs for d = 0.5 pulse
cycle, yielding K (for small densities), or Rayleigh (for large
densities) distributed statistics. In 2D, the average scatterer
spacing d is mapped onto a non-linear segment of the Hilbert
curve, making it difficult to generate scatterers at exact multi-
ples of half-wavelengths in the direction of wave propagation.
However, Rician amplitude statistics can still be obtained with
the 2D model for large values of «, high scatterer densities
and small inter-scatterer spacing. This is illustrated by the 2D
case with d = 0.5 pulse cycle. This case effectively simulates
a compact, solid structure yielding specular reflection.

While the 1D and 2D results may differ for some pa-
rameter settings, both make theoretical sense in their context.
Moreover, the type of speckle obtained by simulation can be
reliably predicted from the parameters of the 2D model, as it
is with the 1D model.

6. CONCLUSIONS

This paper presented a new multi-dimensional scatterer dis-
tribution model which can be used in the context of US im-
age simulation. The model builds on a flexible 1D model
whose desirable characteristics it preserves well. Simulation
results show that textures corresponding to commonly used
parametric models of speckle statistics can be obtained from
this model and well predicted from the model parameters.
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Fig. 5. Number of time each speckle model was chosen out
of 10 trials for simulation cases with o > 1.
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