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ABSTRACT

This paper introduces a novel method for reconstructing opti-

cal tomography images using pre-computed transforms. Our

approach is to pre-compute and store the inverse matrix re-

quired forMAP reconstruction using lossy source coding tech-

niques. We show how lossy source coding techniques can

be used to store the large and non-sparse matrix by apply-

ing a wavelet transform in the image space and appropriate

orthonormal transforms in the sensor space. Lossy coding

dramatically reduces the the number of non-zero coefficients,

thereby proportionately reducing both the required storage

and computation time. However, if the number of sensor

measurements is large, the storage and computation of the

orthonormal transforms can become prohibitive. For this pur-

pose, we introduce a general method for approximating any

orthonormal transform by a series of sparse binary transforms.

This sparse matrix transform technique is then used together

with lossy coding to result in a fast reconstruction algorithm

for optical tomography. Simulations indicate that the tech-

nique can dramatically reduce the storage and computation

requirements in reconstruction by exploiting redundancy in

the transformed matrices.

Index Terms— Optical tomography, sparse matrices, im-
age coding

1. INTRODUCTION

The objective of optical tomography is to reconstruct tissue

cross-sections from measurements of diffusely scattered light

[1] . This is an ill-posed and highly nonlinear inverse prob-

lem, but it is of great potential value since optical spectroscopy

methods offer the potential for much greater specificity in

clinical and research applications. Model based methods are

ideally suited for optical tomography, but they result in very

computationally expensive optimization problems. Numeri-

cal optimization methods such as multigrid optimization [2]

and adjoint differentiation [3], can reduce computation, but
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the computational challenge remains a potential barrier to the

use of optical tomography in real-time clinical applications.

In this paper we present a novel non-iterative reconstruc-

tion approach for optical tomography with the potential to be

much faster than iterative reconstruction methods. Our ap-

proach is based on pre-computation and storage of the inverse

operator using lossy image coding techniques. We show how

lossy source coding techniques can be used to store the large

and non-sparse matrix by applying appropriate orthonormal

transforms in the sensor space and a wavelet transform in

the image space. Importantly, these othonormal transforms

are chosen to minimize the mean squared error in the recon-

structed image by decorrelating both the sensor inputs and the

columns of the matrix. Using typical imaging geometries for

optical tomography, we have shown [4] that lossy coding of

this transformed matrix can dramatically reduce the the num-

ber of non-zero matrix coefficients, thereby proportionally re-

ducing both the required storage and computation time.

However, if the number of sensor measurements is large,

the storage and computation of the required orthonormal trans-

form can become prohibitive. For this purpose, we present

a general method for approximating any orthonormal trans-

form by a series of sparse binary rotations. This sparse ma-

trix transform technique is then used together with the lossy

coding to result in a fast reconstruction algorithm for optical

tomgorahy.

2. OPTIMAL LOSSY COMPRESSION FOR THE
INVERSE SYSTEMMATRIX

The reconstruction problem in optical tomography can be lin-

earized and formed as an inversion

x̂ = Hy (1)

where x̂ ∈ RN denotes the reconstructed 3D image of the tis-

sue’s optical parameters, y ∈ RM is the surface measurement,

and H is the inverse system matrix which can depend on an
unknown bulk parameter vector θ of the material. For nota-
tional simplicity, we will suppress the dependence on θ. Our
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approach to reconstruction will be to pre-compute H , com-
press it using lossy compression methods, and then decom-

press H and compute the required matrix-vector product on-
the-fly to reconstruct the image x̂. In practice, this may mean
that a series of H matrices will be compressed for differing
values of θ. Notice that the columns ofH are actually 3D im-
ages corresponding to the reconstruction of different sensor

measurements, so these columns are well suited for compres-

sion by conventional lossy image coding methods. However,

it is critical to perform this lossy compression with the appro-

priate distortion metric on H , so that the mean-squared error
is minimized in the reconstructed image. In order to obtain

this metric, we must account for the distribution of the mea-

surement y.
Let Ry be the auto-correlation matrix of y defined by

Ry
�
= E[yyT ]

= EΛyET (2)

where E and Λy are the matrices of eigenvectors and eigen-

values of Ry , respectively. Define the transformed inverse

system and data as

H̃ = HEΛ
1

2

y (3)

ỹ = Λ
−

1

2

y ET y. (4)

Notice that E[ỹỹT ] = I , and x̂ = H̃ỹ. If we further define
δH as the quantization error in H and δx̂ as the resulting
quantization error in x̂, then we have that δx̂ = δH̃ỹ. From
this we can obtain an expression for the conditional MSE in x̂
given δH . Assume the measurement y is independent of the
quantization error δH . Then we have the fact that

E
[
‖ δx̂ ‖2| δH

]
=‖ δH̃ ‖2= trace{δHT δHRy} (5)

where ‖ δH̃ ‖ is the Frobenius norm [4]. This means that if
we minimize ‖ δH̃ ‖2 we obtain a reconstructed image x̂+δx̂
with minimum distortion. Therefore, H̃ is the appropriate
representation for the storage and coding of the inverse matrix

H .
Next, we decorrelate along rows of H with Karhunen-

Loeve (KL) transform and decorrelate along columns with

wavelet transform [5]. These transforms can be expressed as

Ȟ = WH̃Φ (6)

where Φ consists of the eigenvectors of H̃T H̃ , andW repre-

sents 3D wavelet ransform. Since both the KL and wavelet

transform are orthonormal, we know ‖ δȞ ‖2=‖ δH̃ ‖2.
Accordingly, define the transform data as

y̌ = ΦT ỹ = ΦT Λ
−

1

2

y ET y . (7)

Then x̂ can be expressed as:

x̂ = W−1Ȟy̌ (8)
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Fig. 1. Illustration of inverse system matrix compression. Ȟ
is a sparse representation ofH through KL and wavelet trans-
forms. The shaded region represents the effective non-zero

entries in Ȟ .

After obtaining the sparse representation H , the SPIHT
algorithm [6] is used to quantize and encode each column of

the matrix with the same quantization table.

Figure 1 illustrates compression of H , where Ȟ is the
sparse representation of H obtained through KL and wavelet
transforms. Due to sparsity of Ȟ , evaluation of Ȟy̌ requires
many fewer multiplications than evaluation ofHy. Therefore,
lossy compression both reduces the data that must be stored,

and reduces computation required to reconstruct the image.

So the final algorithm for reconstruction is given by

x̂ = W−1[Ȟ]Ty , (9)

where [Ȟ] denotes the quantized version of Ȟ and T is de-
fined by

T = ΦT Λ
−

1

2

y ET . (10)

If the number of sensor measurements,M , is small, then
the computation and storage are dominated by the number of

nonzero elements in [Ȟ].
However, if the number of measurements, M , is large,

then the computation and storage may be dominated by mul-

tiplication and storage of the matrix T . The next section ad-
dresses how to efficiently compute and store the transform T .

3. SPARSE MATRIX TRANSFORM

In this section, we present a sparse matrix transform (SMT)

method which allows for efficient storage and multiplication

with T . We do this by approximating the orthonormal trans-
forms in T as a product of sparse binary orthonormal rota-
tions. Since the distortion-rate performance is primarily dom-

inated by the whitening process as shown in Figure 3, we il-

lustrate this method by computing an approximation to the

orthonormal matrix E from equation (2).
We approximate E as

E ≈
K−1∏
k=0

Ak (11)
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where ik and jk are two distinct indices chosen so that ik <
jk, and Ak is a sparse matrix of the form

[A(ik, jk, θk)]i,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 i = j �= {ik or jk}
cos(θk) if i = j = {ik or jk}
− sin(θk) if i = ik and j = jk

sin(θk) if i = jk and j = ik
0 otherwise

(12)

Each matrix Ak can be viewed as a rotation in the coordi-

nate pair (ik, jk). Our strategy is to useK (orderM log
2
M )

of these sparse rotations to approximate the orthonormal trans-

form E. Since multiplication by Ak only requires 3 multi-

plies, an approximate sparse factorization of E can dramati-
cally reduce complexity for large matrices E. In practice, we
represent the matrix Ak in the computer by two shorts for ik
and jk, and two doubles for cos(θk) and sin(θk).
We compute the matrices Ak in a recursive proceedure

starting with k = 0. To do this, apply the following recursion

C ← Ry

For k = 0 : K − 1 {

Fi,j ←
C2

i,j

Ci,iCj,j

(ik, jk) ← arg max
i<j

{Fi,j}

θk ← arctan (2 ∗ Cik,jk
, Cikik

− Cjkjk
) /2

Ak ← A(ik, jk, θk)

C ← AT
k CAk}

Intuitively, each new sparse rotation Ak, decorrelates the in-

dices ik and jk, and it can be shown that the indices ik and jk

are selected so that
∏M−1

i=0
Cii is minimized after the update.

Accordingly, Λy in (3) and (4) is replaced by the diagonal en-

trees of the resultingC. The same factorization procedure can
also be used to approximate Φ in (6) using its sparse matrix
transform.

4. NUMERICAL RESULTS

Here we give some numerical results of fluorescence optical

diffusion tomography (FODT) [7] from reflectance measure-

ments based on the proposed algorithms. The measurement

geometry is shown in Fig. 2(a) where a 6 cm × 6 cm probe
scans on top of the semi-infinite medium. The probe con-

tains 4 sources and 117 detectors as shown in Fig. 2(b). The

background optical values are set to μax,m
= 0.02 cm−1,

Dx,m = 0.03 cm and ημaf
= 0 cm−1, which approximates

the optical property of tissue. The measurements were gener-

ated with a spherical heterogeneity of radius 0.5 cm present
2 cm below the center of the probe. The optical values of
the heterogeneity are μax

= 0.12 cm−1, μam
= 0.02 cm−1,

Dx = Dm = 0.03 cm−1 and ημaf
= 0.05 cm−1. The size

of the computation domain is 8× 8× 4 cm3 with a resolution

0.25 cm. Additive noise was introduced based on the shot
noise model of [8] giving an average SNR of 35.6 dB. The

inverse matrix was computed column by column using an it-

erative optimization method [4]. We modeled the covariance

of y by Ry = AAT where A is the linearized forward model
for the FODT system. The wavelet transform was constructed

with the popular biorthogonal 9/7 tap filters and using a sym-

metric boundary extension. We used QccPack library [9] to

implement the 3D wavelet SPIHT coding.

Figure 3 plots the normalized root mean squared error

(NRMSE) of the reconstructed image versus the number of

bits per matrix entry in H . Each plot corresponds to a differ-
ent measurement transform. The best distortion-rate perfor-

mance is obtained by using the exact KL transform for both

the whitening of y and the decorrelation of H̃ . However, sim-
ply whitening y yields nearly the same distortion-rate perfor-
mance, while whitening with the SMT transform results in

a small but significant increase in bit rate. The SMT uses

8M log
2
M rotations. Notice that using no transform, results

in a large increase in bit rate.

Table 1 shows the effect of compression with the KLT

and SMT methods. The KLT method uses both whitening

and decorrelation with a single stored transform, and the SMT

method uses just whitening with the sparse transform. The bit

rate for both methods was adjusted to achieve a distortion of

approximately 10%, and this resulted in a SPIHT compres-
sion ratio of 192:1 for the KLT and 122:1 for the SMT. The

total storage includes both the storage ofH and the storage of
the required transform. Notice that the SMT reduces storage

by a factor of approximate 1.7 for this problem.

Fig. 4 shows the reconstruction results at the depth of

2 cm with the different compression methods. The normal-
ized root mean squared error (NRMSE) in the two compres-

sion cases are both approximate 10%.

5. CONCLUSION

We introduce a method for compressing the transforms re-

quired to reconstruct images for FODT data. Our method in-

corporates a sparse-matrix transform formed by a series of

rotation matrices to both reduce storage and computation. We

show that the method has promise on a simulation of a prac-

tical imaging geometry.
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Fig. 2. (a) Measurement system geometry; (b) Probe config-
uration: × - source; ◦ - detector
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Computation Storage

Order Seconds Order Mbytes

Conjugate

Grad.

MNI 70 MN 66.1

Uncompress NM 0.25 NM 66.1

Compress

with KLT

NM

c1

+M2 0.015
NM

c1

+M2 2.02

Compress

with SMT

NM

c2

+K 0.019
NM

c2

+K 1.18

Table 1. Comparison of conjugate gradient inversion, di-
rect multiplication by the uncompressed inverse, and mul-

tiplication by the compressed inverse using KLT and SMT.

Results use number of voxels N = 33 × 33 × 17, num-
ber of measurements M = 468, number of sparse rota-
tions K = 8M log

2
M , and SPIHT compression ratios of

c1 = 192 : 1 and c2 = 122 : 1 for KLT and SMT whitening
respectively.
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Fig. 4. Reconstruction results using different compression
methods (a) original image, (b) uncompressed reconstruc-

tion, and reconstruction results using (c) KLT transform for

whitening (10.2% distortion with SPIHT compression ratio of

c1 = 192 : 1), and (d) SMT transform for whitening (10.5%
distortion with SPIHT compression ratio of c1 = 122 : 1).
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