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ABSTRACT

Q-ball imaging (QBI), introduced by D. Tuch, reconstructs
the diffusion orientation distribution function (ODF) of the
underlying fiber population of a biological tissue. An an-
alytical solution for QBI was recently proposed by several
independent groups, using a spherical harmonic (SH) repre-
sentation of the input signal. The methods differ primarily
in the way SH are estimated. In this paper we validate these
methods and compare them against Tuch’s numerical QBI on
synthetic data, on a biological phantom and on a human brain
dataset. We show that analytical QBI results in a speed-up
factor of 15 over Tuch’s QBI, while providing results that are
in strong agreement. We also show that at the cost of slightly
reducing angular resolution, QBI with Laplace-Beltrami reg-
ularization provides the strongest robustness to noise and the
most accurate detection of fiber crossings.

Keywords: diffusion tensor imaging (dti), high angular
resolution diffusion imaging (hardi), q-ball imaging (qbi), ori-
entation distribution function (odf), regularization.

1. INTRODUCTION

Q-Ball Imaging [1] is a high angular resolution diffusion imag-
ing (HARDI) reconstruction method that aids in the infer-
ence of fiber bundles with crossings, with advantages over
diffusion tensor imaging (DTT). QBI seeks to reconstruct the
diffusion orientation distribution function of water molecules
in the underlying fiber population. There are other existing
high order techniques in the literature such as those reviewed
in [2, 3]. Most such techniques lack a straightforward regu-
larization process and are usually computed numerically, thus
adding a computational burden.

Descoteaux et al. [4] have recently proposed an analyt-
ical solution to ODF reconstruction in QBI using SH and
the Funk-Hecke theorem. Independently and with different
derivations, Anderson [5] and Hess et al [6] have also devel-
oped essentially the same solution using SH. In [4], a Laplace-
Beltrami (LB) regularization step is included in the estimation
of the SH coefficients whereas Tikhonov (TKH) regulariza-
tion is used in [6], while no regularization is used in [5].

In this article we first compare the performance of the ana-
lytical QBI method with LB regularization [4] against numer-
ical QBI [1], considering computational complexity, running
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time, and robustness to noise. We also compare the method
of [4] with those of [5] and [6] with regard to accuracy of fiber
detection and limits on angular resolution. We conclude that
the analytical QBI with LB regularization has the following
advantages: 1) it is about 15 times faster than numerical QBI
with ODFs that are in strong agreement and 2) at the cost of
slightly reducing angular resolution with respect to [5, 6], the
solution is robust to noise, improves fiber detection accuracy
and reduces angular error between detected crossing fibers.

2. METHODS

2.1. Analytical and Numerical QBI Implementation

For the analytical solution, the signal is estimated at each of
the NV gradient directions i as S(6;, ¢;) = Zf‘:l ¢;Y; (05, ¢:),
where Y; is the j'* element of the SH basis and R = (1/2)(¢{+
1)(£+2) is the number of terms in the basis of order ¢, choos-
ing only even orders. Our implementation is based on a mod-
ified symmetric, real, orthonormal basis where a LB regu-
larization approach (with parameter \) is used to eliminate
unnecessary higher order terms in the SH approximation [4].
In [6], Hess et al.’s implementation uses classical TKH regu-
larization to obtain the c; coefficients at high orders (£ > 4)
and a simple unregularized solution for £ = 4. Spherical har-
monics allow the simplification of the Funk-Radon Transform
(FRT) by the Funk-Hecke theorem. The final ODF recon-
struction, ¥, is simply a diagonal linear transformation of the
signal SH coefficients ¢;, ¥(u) = Zle 2m Py, (0)c;Yj(u),
where ¢; is the order associated with j** SH basis element
and Py, (0) a Legendre polynomial.

Our implementation of Tuch’s numerical QBI is taken from
[7]. We choose & = /87N integration points per equa-
tor to compute the Funk-Radon integral and set the angu-
lar width of the spherical Gaussian interpolation kernel to
o = (3/2)\/2m/N." This heuristic choice gives the best
trade-off between accuracy and stability in our experiments.

2.2. Data Generation and Real Data Acquisition

First, we generate synthetic ODF data using the multi-tensor
model [4, 8]. We use a tensor profile with eigenvalues [3, 3,

'In Tuch [1], k is set to 48, o to 5° and N = 755 reconstruction points.
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17]1x10~* mm?/s (FA = 0.8) and use complex Gaussian noise
with standard deviation of o, producing a signal with SNR
= 1/0. Then, the exact ODF is computed for n fibers [1, 4].
Second, we use a biological phantom dataset obtained from
a 1.5 T scanner with 90 gradient directions, 2.8 mm isotropic
voxels, and b = 3000 s/mm? [7]. Finally, we use a human
brain dataset obtained from a 3T scanner with 99 gradient
directions, 2 mm isotropic voxels, and b = 3000 s/ mm?2.

2.3. Computational Complexity Analysis

Assuming the input data is of size XxYxZxN, we have a
diffusion signal vector of Nx1 at each voxel. We let &k be the
number of points on each equator over which the numerical
FRT is computed. In analytical QBI, all methods [4, 5, 6]
have roughly the same computational complexity once SH
coefficients are obtained. Letting R be the number of ele-
ments in the SH basis, the analytical ODF reconstruction is
O(XY ZNR) because of the O(NN R) matrix multiplication
at every voxel, while the numerical ODF reconstruction is
O(XY ZNE) because of the integration of k equator points
for each sampling direction N at every voxel. Therefore,
the difference in computational complexity between numer-
ical and analytical QBI methods is between R and k. For
order ¢ = 4,6,8, R = 15,28,45 and k = 48, the theoretical
speed-up factor is approximately 3, 2, and 1, respectively.

2.4. Experimental Validation

Numerical and Analytical QBI Comparison To compare ODFs,
we compute the mean Euclidean squared error between the
estimated ODFs from numerical QBI [1] and from analytical
QBI with LB regularization [4] on the rat and brain datasets.
Then, to perform a quantitative evaluation of the ODF max-
ima, we use the ground truth orientations for the phantom
from [9]. For each ODF dataset and for the DTI ellipsoids, the
maxima are extracted. At each voxel, the smallest angular dif-
ference between the available maximum(a) and ground truth
orientation(s) is recorded. The median and mean + standard
deviation (std) orientation errors in degrees are then recorded.

Robustness to Noise In our synthetic data simulations we
fix b = 3000 s/mm?, N = 81 (order 3 tessellation of the
sphere), randomly choose n between 1, 2, and 3 fibers and
vary the SNR between 5 and 50. For each SNR, we generate a
set of 100 such raw HARDI datasets, estimate Tuch’s numer-
ical ODF and estimate our analytical ODF with and without
regularization respectively. The optimal LB regularization A
parameter for the SH approximation can be obtained from the
L-curve numerical method, detailed in [8]. However, to avoid
having to compute the optimal A for each HARDI profile, we
set A = 0.006, a value experimentally found to be ideal for
separating 1-fiber from 2-fiber distributions [8]. We use order
¢ = 8 and record the average Euclidean squared error between
exact and estimated ODFs.

dataset size (voxels) | 35x17x35x90 | 128x128x63x99

Numerical QBI 0:13.59 13:27.12
Analytical QBI [4]

(=4 0:01.27 0:40.42

(=6 0:01.61 0:53.06

(=38 0:02.09 1:49.37

Table 1. A comparison of running times in minutes:seconds.

Fiber Detection and Angular Resolution It is generally as-
sumed that the fiber directions are simply given by the lo-
cal maxima of the normalized [0,1] ODFE, where the function
surpasses a certain threshold (here, we use 0.5). This rela-
tion can be used to extract local fiber orientation estimates
for comparison with an estimated ground truth. To evalu-
ate fiber detection differences between analytical QBI with
LB [4], TKH [6] and no regularization [5] in ODF estima-
tion, we test on noisy synthetic HARDI data with SNR 10, 2
orthogonal fibers, varying estimation order ¢ and b-factors of
3000 and 1000 s/mm?. We generate 1000 such HARDI data
separately, estimate ODFs with and without LB and TKH reg-
ularization, count the number of times we correctly detect 2
ODF maxima, and report the percentage and average angular
error + standard deviation in degrees over all trials.

Finally, we perform a numerical experiment to evaluate
angular resolution limitations of the ODF reconstruction meth-
ods. We generate noise-free synthetic HARDI profiles for 2
fibers and for b-factors of 3000 and 1000 s/mm?. Then, we
vary the crossing angle between fibers to determine the crit-
ical angle at which only a single maxima is detected instead
of two. We report this critical angle as the angular resolution
limit of the estimation.

3. RESULTS AND DISCUSSION

Running Time Comparison Tbl. 1 shows that analytical QBI
is up to 15 times faster than Tuch’s numerical QBI in practice.
Computation is performed on a single processor, 3.4 GHz, 2
GB RAM machine. The speed-up is mainly due to the in-
terpolation kernel width of Tuch’s approach (not considered
in the complexity analysis), which adds a constant number of
operations (4 to 7 in practice) at every equator point.
Numerical and Analytical QBI Comparison First, Fig. 1
shows that Tuch’s numerical QBI and our analytical QBI are
qualitatively almost identical after min-max normalization [1].
Moreover, the mean Euclidean squared difference between
the ODFs leads to 0.55 + 0.17% difference. Similarly, the
overall shapes of the ODFs reconstructed from the brain dataset
are nearly the same with 0.68 £ 0.23% difference, confirming
the strong agreement. Finally, Tbl 2 shows that Tuch’s nu-
merical QBI and analytical QBI with LB regularization yield
essentially the same angular error while significantly reducing
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T1-weighted

Tuch [1] QBI analytical QBI [4]
Fig. 1. Numerical and analytical QBI are almost identical.

Comparison with ground truth

H median |  mean + std
analytical QBI [4] 12.20° 15.94 + 15.32°
numerical QBI [1] 12.19° 15.94 + 15.40°
DTI 15.2° 19.4 +16.2°

Table 2. Analytical and numerical QBI yield the same angu-
lar error while reducing the errors obtained from the DTI.

—6— A =0.006
S—A=0
Tuch

0.2}

Squared error
o
a

4

0.05

Fig. 2. LB regularized Analytical QBI is more robust to noise.

the errors obtained from DTIL.

Robustness to Noise Fig. 2 shows that the LB regulariza-
tion reduces ODF estimation errors using the simulation de-
scribed in Section 2.2. As expected, the error decreases when
the noise level decreases, from more than 12% for a noisy sig-
nal to less than 1% for high quality data. It is also important
to note that for high quality data, numerical QBI and analyt-
ical QBI with and without regularization are almost identical
whereas for noisy data, the analytical QBI with regularization
A = 0.006 performs best, while numerical QBI is better than
analytical QBI without regularization (A = 0).

Fiber Detection and Angular Resolution Fig. 3 shows that
LB regularized ODFs remove small perturbations due to noise
that can create false maxima in ODFs estimated with and
without TKH regularization. In particular, in this example
there are 3 maxima detected for TKH and no regularization
at £ = 8 and also an angular error made on the detected
maxima at £ = 6. Tbl. 3 confirms the observation made in
Fig. 3: LB regularized ODFs improve the detection of cross-

Tikhonov regularization

Fig. 3. LB regularization decreases perturbations due to noise
that can create false maxima and maxima with angular error.

ing fibers while reducing angular error as calculated from the
maxima of the ODF. In the case there were more than 2 max-
ima detected, the error was estimated on the two closest ODF
maxima to ground truth. With LB regularization the detec-
tion is nearly perfect at b = 3000 s/mm? and above 88% at
b = 1000 s/mm? for all orders whereas the detection dra-
matically decreases for high order estimations ¢ = 6,8 for
TKH and no regularization. Tbl. 3 shows also that LB regu-
larization reduces the average angular error as calculated from
the ODF maxima detected and their ground truth. Overall,
orthogonal fibers are detected accurately by all methods for
¢ = 4 even at the lower b-value. The approximation is smooth
enough so that effects due to noise are reduced. LB regular-
ization gives the best results for higher order (£’s > 4).

The behavior of the ODFs in Fig. 3 and the improved per-
formance in Tbl. 3 due to the LB regularization are expected.
High-order modeling errors due to noise are avoided while
minimally altering the lower order coefficients involved in the
description of the ODF. The TKH regularization used in [6]
mainly improves the numerical conditioning of the matrices.
It is not designed to smooth the spherical functions as it per-
turbs the diagonal elements uniformly, which has the effect
of adding the same weight to every eigenvalue. As seen in
Fig. 3, this does not change the overall shape of the ODF and
does not eliminate spurious peaks.

Finally, Tbl. 4 shows the critical separation angle of the
analytical methods, i.e., the angle between 2 fibers under which
only a single ODF maximum starts to be detected. As ex-
pected, it is harder to distinguish crossing fibers for lower
b-values. In fact, there is approximately a 15° gain in an-
gular resolution when going from a b-value of 1000 to one of
3000 s/mm?. For ¢ > 4 there is an improvement in angular
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b-factor | order ¢ | LB (X = 0.006) [4] | without LB (A = 0) [5] | Tikhonov [6]
4 99.9%, 2.1 +5.4° 99.6%, 1.6 +£4.7° 99.6%, 1.6 +£4.7°
3000 s/mm? 6 99.6%, 2.8 £ 6.1° 95.8%, 4.4 +7.2° 95.9%, 4.2 £ 7.0°
8 99.4%, 2.5 + 5.8° 62.9%, 4.6 £ 7.4° 63.1%, 4.5 £ 7.2°
4 96.2%, 8.6 £+ 10.6° 96.1%, 7.1 £ 8.9° 96.2%, 7.0 + 8.8°
1000 s/mm? 6 90.3%, 10.4 £ 10.8° 69.4%, 11.9 £10.1° 71.0%, 11.1 £9.7°
8 88.5%, 10.8 +11.4° 23.4%, 11.3 +10.9° 24.3%, 11.1 £ 10.5°

Table 3. LB regularization improves the percentage of crossing fibers detected while reducing angular error.

b = 3000 s/mm? b = 1000 s/mm?
order ¢ | Laplace-Beltrami Tikhonov A =0 | Laplace-Beltrami Tikhonov A\ =0
4 63° 60° 60° 75° 71° 71°
6 59° 53¢ 54° 74° 68° 68°
8 58° 53¢ 53¢ 74° 68° 68°

Table 4. Angular resolution of the ODF estimation with/without Laplace-Beltrami (A = 0.006) and Tikhonov regularization.

resolution of roughly 5° for all methods because higher or-
der frequencies are included in the estimation of the signal.
Lastly, TKH or no regularization has a better angular resolu-
tion than using LB regularization. In the LB case, the critical
angle remains reasonable at about 5° higher. This small de-
crease in angular resolution is due to smoothing of the higher
frequency information by the LB operator. Hence, there is a
trade-off between accuracy of fiber detection and the limit on
angular resolution.

4. CONCLUSION

This paper carries out a validation of recent analytical QBI
methods [4, 5, 6] and a comparison against Tuch’s numeri-
cal QBI [1], with several important findings. First, analytical
ODF estimation using spherical harmonics offers the advan-
tage that the solution for all directions is obtained in a sin-
gle step, which makes it 15 times faster than numerical ODF
estimation. Second, both numerical and analytical QBI re-
construct a diffusion ODF that agrees with ground truth from
synthetic data and from a biological phantom, and on brain
data. Finally, at the cost of slightly reducing angular resolu-
tion, solving for Laplace-Beltrami regularized spherical har-
monic coefficients describing the input signal reduces pertur-
bations due to noise, enabling a higher order approximation
to be used, which in turn improves fiber detection.
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