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ABSTRACT 

 
This paper presents a novel variable decomposition 
approach for pose recovery of the distal locking holes using 
single calibrated fluoroscopic image. The problem is 
formulated as a model-based optimal fitting process, where 
the control variables are decomposed into two sets: (a) the 
angle between the nail axis and its projection on the 
imaging plane, and (b) the translation and rotation of the 
geometrical model of the distal locking hole around the nail 
axis. By using an iterative algorithm to find the optimal 
values of the latter set of variables for any given value of 
the former variable, we reduce the multiple-dimensional 
model-based optimal fitting problem to a one-dimensional 
search along a finite interval. We report the results of our in 
vitro experiments, which demonstrate that the accuracy of 
our approach is adequate for successful distal locking of 
intramedullary nails. 
 

Index Terms—Biomedical applications of X-ray, 
bones, parameter estimation, optimization methods 
 

1. INTRODUCTION 
 
One of the most difficult steps of intramedullary nailing of 
femoral shaft fractures is distal locking – the insertion of 
distal interlocking screws, for which it is necessary to know 
the positions and orientations of the distal locking holes 
(DLHs) of the intramedullary nail (IMN). Complicating the 
process of locating and inserting the distal interlocking 
screw is the nail deformation with insertion. It has been 
reported that deformation occurs in several planes due to 
medial-lateral (ML) and anterior-posterior (AP) flexion of 
the distal nail after it has been inserted [1]. Therefore, it is 
very difficult, to determine what the resultant locations and 
orientations of the DLHs will be relative to their initial 
position before it is deformed. The surgeon depends heavily 
on intra-operative X-ray means in a conventional surgical 
procedure for providing precise locations and orientations 
of the DLHs. It requires positioning the axis of the 
fluoroscope perpendicular to the locking holes so that these 
holes appear perfectly circular in the images. This is 
achieved through a trial-and-error method and requires 

long time X-ray exposure for both the surgeon and patient. 
It has been reported that the surgeon’s exposure to radiation 
for each conventional surgical procedure was 3 – 30 min, of 
which 31% - 51% was used for distal locking [2]. 

The desire to target accurately with as little as possible 
X-ray exposure has led to various attempts to develop 
image-based methods for recovering the positions and 
orientations of DLHs [3][4][5][6]. These methods require 
either multiple calibrated images or single image but with 
perfectly circular holes in the image, which normally 
requires the X-ray technician to use a try-and-move method 
several times to achieve. 

This paper presents a novel variable decomposition 
approach for solving this problem using single calibrated 
fluoroscopic image. We do not ask for an image with 
perfectly circular holes but we do put a constraint on its 
acquisition [6], i.e., the reduced patient shaft should be 
roughly parallel to the image intensifier (II) of the 
fluoroscopy machine. We then formulate the pose recovery 
of the DLH as a model-based fitting problem and 
decompose the control variables into two sets: (a) the angle 
between the nail axis and its projection on the imaging 
plane, and (b) the translation and rotation of the 
geometrical models of the DLHs around the nail axis. By 
using an iterative closest projection point algorithm 
introduced in [5, 6] to find the optimal values of the latter 
set of variables for each give value of the former variable, 
we reduce the multiple-dimensional optimal fitting problem 
to a one-dimensional search along a finite interval. 
 

2. IMAGE CALIBRATION, GEOMETRICAL 
MODELS, AND PREPROCESSING 

 
Image Calibration: In reality, the proximal fragment, the 
distal fragment, and the nail may be treated as three rigid 
bodies and registered independently. The rigid 
transformations between these three rigid bodies can be 
trivially obtained from a navigator such as an 
optoelectronic tracker, a magnetic tracker, or even a 
medical robot. As this is not our focus in this paper, here 
we assume that the fractured femur has already been 
reduced and the proximal fragment and distal fragment are 
kept fixed relative to each other at the time of image 
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acquisition. We also assume that the nail has been inserted 
till the distal end of the femur and has been locked 
proximally by screw so that the complete femur and the nail 
can be treated as one rigid body. A local coordinate system 
(COS) is established on this rigid body through a so-called 
dynamic reference base (DRB) technique. In the following 
description, let’s denote this patient COS as A-COS. All 
computations are done in this reference COS. 

To relate a pixel in the two-dimensional (2D) 
projection image to A-COS, the acquired image has to be 
calibrated for physical projection properties and be 
corrected for various types of distortion. We have chosen a 
weak-perspective pin-hole camera model for modeling the 
C-arm projection [7]. Here we assume that for each pixel in 
the input image we can always find a projection ray 
emitting from the focal point of the image through the pixel 
and a three-dimensional (3D) intersection point of between 
its associated projection ray and the imaging plane 
 
Geometrical Models: The distal part of IMN containing 
the two DLHs, which is what we are interested in, is 
modeled as a cylinder (Figure 1, left). The distance L 
between the centers of the two DLHs can be accurately 
extracted from its product information. The geometrical 
model of the DLH is represented by two circles as shown by 
Figure 1, right, and is used later to simulate X-ray 
projection of the DLH model. 

To obtain the coordinates of those points (visualized as 
red dots in Figure 1, right) used to describe the model of the 
DLH, a local COS uvwC '  is established by taking the 
intersection point C (it is also called the center of the DLH) 
between the axis of the DLH and the axis of the IMN as the 
origin, the axis of the IMN as the u  axis, and the axis of 
the DLH as the v  axis (see Figure 1 for details). The 
coordinates of those points expressed in this local COS can 
be directly measured from the nail using a caliber, thanks to 
the symmetrical property of the DLH; or extracted from the 
engineering drawings of the nail, if they are available. 

 
Figure 1. The geometrical model of the distal part of the 
IMN and the geometrical model of the distal locking hole . 
 
Preprocessing: The task of the preprocessing is to 
determine the projection points of the centers of the DLHs. 
To extract these feature points from the image, Hough 
transform [8] is used to find the two mostly parallel edge 

lines of the projection of the distal part of the IMN after 
applying a Canny edge detector to the image. The 
projection of the axis of the distal part of the IMN is 
considered as the middle line between these two mostly 
parallel edge lines. To determine those edge pixels 
belonging to DLHs, the method reported in [3] is modified 
for our purpose. A parallelpiped window, whose sizes are 
equal to the distance between the detected edge lines, is 
swept along the middle line to find two locations which 
contain the maximum number of edge pixels and whose 
distance is greater than a pre-selected distance threshold T 
(e.g. the width of the window). The centroids of the 
detected edge pixels in both locations are then calculated. 
The projection point of the center of each DLH is then 
determined by finding the closest point on the middle line 
to the associated centroid. An example of feature point 
detection is shown in Figure 2. 

 
Figure 2. Feature point detection. The detected projection 
points (red dots) of the centers of both DLHs are displayed 
together with the edge pixels of the DLHs (yellow) 
 

3. THE PROPOSED APPROACH 
 
3.1. Model-based Fitting for pose recovery 
 
Using above detected feature points, we can find their 
corresponding spatial points on the imaging plane. Let’s 
denote them as d1 corresponding to the projection point of 
the center C1 of the distal DLH (the DLH that is closer to 
the nail tip), and d2 corresponding to the projection point of 
the center C2 of the proximal DLH, respectively, as shown 
in Figure 3. These two points define a line in A-COS. This 
line together with the focal point f defines a plane where 
the axis of the distal part of the nail should fall in. As we 
know the coordinates for point f, d1, and d2, we can 
calculate three internal angles 1, 2, and 3 of triangle 
fd1d2. Assume the angle between the nail axis and its 
projection in the imaging plane is , then the coordinates of 
the centers of both DLHs are calculated as following: 

)/,/(

)cos(
)sin(

)cos()sin(

)sin(
)sin(

||||

)(
;

||||

)(

22

2

3

32
2

3

2
1

2

2
22

1

1
11

where

LLL

LL

fd
fdLfC

fd
fdLfC

 

(1) 

1157



where L is the distance between the centers of two DLHs. It 
can be measured or extracted from the product information.  

Accoding to equation (1), the coordinates of both 
centers only depends on the parameter , so as the direction 
of the nail axis (nx, ny, nz). 

Assuming that the coordinates of the center C of one of 
the DLHs is denoted as [Cx, Cy, Cz]

T, the problem to 
estimate the pose of the DLH in A-COS is now changed to 
find the rotation angle , rotation angle , and translation 
distance  of the geometrical model of the DLH along the 
nail axis [nx, ny, nz]

T so that the simulated X-ray projection 
of the DLH can be fitted to its real X-ray projection (see 
Figure 3). This constrained transformation around the 
parameterized nail axis could be derived as in [5, 6]: 
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and trans( , , ) = [tx, ty, tz]
T; where tx, ty, tz are defined as; 
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(3) 

The pose recovery problem can then be formulated as a 
optimal model-based fitting as in [5, 6]: 

2||)),,(),,((||min )(
}*,*,*{ i

iiNj transmrotPe  (4) 

where {ej} are the detected edge pixels of the DLHs; {mi} 
are the points used to describe the geometrical models the 
DLHs; P() denotes the projection operator; N() denotes the 
action of finding the closest edge pixel of the simulated 
projection point into the image of a model point. 

 
Figure 3. Schematic view of model-based fitting 

3.2. Variable Decomposition Approach 
 
The control variables in equation (4) can be decomposed 
into two sets: (a) the angle  between the nail axis and its 
projection in the imaging plane; and (b) the rotation and 
translation distance of the geometrical models of the DLHs 
along the nail axis ( , ). Now the original optimization 
problem can be re-formulated as: 

)]||)),,(),,((||min(min[ )(
}*,*{*

2

i
iiNj transmrotPe  (5) 

Where the term in the square brackets simply means the 
minimum sum of distance for a fixed  and all possibilities 
of ( , ). The advantage of such decomposition lies in the 
fact that the latter set of variables can be calculated by 
using an iterative closest projection point algorithm as 
proposed in [6] and described below for completeness, 
which then reduces the original multiple-dimensional 
optimization problem to a one-dimensional search along a 
finite interval.  
 
3.3. The Iterative Closest Projection Point Algorithm 
 
Given a fixed , we can estimate the positions of both 
centers of DLHs and the orientation of the nail axis. Then, 
the initial transformation between the local COS of the 
geometrical model of the DLHs and A-COS can be obtained 
by taking the estimated center as the origin, the estimated 
nail axis as the u axis, and the normal of the imaging plane 
as the v axis. All points defined in the local COS of the 
geometrical model of the DLH can then be transformed to 
A-COS using this transformation. The optimal values of the 
rotation  and the translation  of the models along the nail 
axis can be optimally estimated by fitting the geometrical 
models of the DLHs to the image [5, 6].  

Let’s denote E be a set of NE detected 2D edge pixels 
},...,,{

EN
eee 21  of the DLH projection. Further denote Mt-1 

be a set of NM model point },...,,{ 11

1

1

0

t
MN

tt mmm  at iteration 

step t-1. Now in the iteration step t, we perform following 
steps: 

Simulating X-ray projection: In this step, we simulate 
the X-ray projection of the geometrical model of the DLH 

to remove invisible points. Let 1tP  be a set of PN  2D 

projection points },,,{ 11

2

1

1

t
PN

tt ppp  obtained by simulating 

X-ray projection of 3D model into the image.  Normally 

MP NN . Thus, for each 2D projection point 1t
ip , we 

know its associated 3D model point 1t
im . 

Find closest projection point: In this step, we try to 
find the closest neighbor edge pixel  ie  of each 2D model 

projection point 1t
ip .  
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Establishing 3D-2D correspondence: For each 2D 
matched pairs ),( 1t

ii pe , calculate the forward projection 

ray iBP  of the 2D edge pixel ie . Then for the ray iBP , 

calculate a 3D point pair ),( 111 t
i

t
i

t
i mbePP , where 1t

ibe  

is a point on the line iBP  that is closest to the 3D model 

point 1t
im of the model projection point 1t

ip .  

Estimating pose: For all calculated 3D point pairs 
}{)( 11 t

i
t PPPPS , find an optimal local solution of all pose 

parameters by minimizing following cost function: 

i

ttt
i

ttt
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where we drop the symbol  from the expressions of rot() 
and trans(), as its value is fixed. 

Updating pose: Update the pose of all model points 
},,,{ 11

2

1

1

t
MN

tt mmm  using the calculated transformation. 

These steps are repeated until all pose parameters are 
converged. 
 
4. EXPERIMENTAL RESULTS 
 
We design and conducted in vitro experiments to analyze 
the accuracy and robustness of the proposed approach. A 
SYNTHES® (STRATEC Medical, Oberdorf, Switzerland) 
9 mm solid titanium femoral nail was used in our study. It 
was inserted into a cadaveric human femur and was locked 
proximally. A Siemens ISO-C C-arm (Siemens AG, 
Erlangen, Germany) was used to acquire fluoroscopic 
images for our experiments. The ground truth of the 
positions of the DLHs was obtained after image acquisition 
by inserting a custom-made steel rod through the hole and 
then digitizing both top and bottom centers of the rod using 
an opto-trackable sharp pointer (OPTOTRAK 3020, 
Northern Digital Inc, Waterloo, Canada). 

Three images acquired from different view directions 
were used in our experiments, as shown in Fig. 4. For each 
image, we applied the proposed approach ten times to 
estimate the poses of the DLHS. The estimated results were 
compared to the ground truth to compute the error for each 
DLH, which was defined as the angular difference between 
the estimated axis of the DLH and the axis obtained 
through pointer-based digitization.  

 
Figure 4. Three images used in our experiments. From left 
to right: LM_00, LM_01, and LM_02 

Table 1. Experimental results 

Test image Angular differences (o) (mean ± std) 
LM_00 0.7 ± 0.3 
LM_01 0.9 ± 0.2 
LM_02 1.5 ± 0.2 
Overall 1.0 ± 0.4 

 
In all studies, the positions and orientations of DLHs 

could be automatically recovered. The angular errors are 
shown in Table I. Compared to ground truth, the average 
angular error was found to be 1.0o (std = 0.4o). 
 

5. CONCLUSIONS 
 
We have presented a novel variable decomposition 
approach for automatic pose recovery of distal locking holes 
from single calibrated fluoroscopic image. Unlike 
previously introduced method [3], our approach does not 
ask for an image with perfectly circular holes. Our in vitro 
experimental results demonstrate that the accuracy of our 
approach is adequate for successful distal locking of 
intramedullary nails. 
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