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Abstract
In medical imaging, parameterized 3D surface models are of great interest for anatomical
modeling and visualization, statistical comparisons of anatomy, and surface-based registration and
signal processing. By solving the Yamabe equation with the Ricci flow method, we can
conformally parameterize a brain surface via a mapping to a multi-hole disk. The resulting
parameterizations do not have any singularities and are intrinsic and stable. To illustrate the
technique, we computed parameterizations of cortical surfaces in MRI scans of the brain. We also
show the parameterization results are consistent with constraints imposed on the mappings of
selected landmark curves, and the resulting surfaces can be matched to each other using
constrained harmonic maps. Unlike previous planar conformal parameterization methods, our
algorithm does not introduce any singularity points.
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1.INTRODUCTION
Surface-based modeling is valuable in brain imaging to help analyze anatomical shape, to
statistically combine or compare 3D anatomical models across subjects, and to map and
compare functional imaging parameters localized on anatomical surfaces. Parameterization
of these surface models involves computing a smooth (differentiable) one-to-one mapping of
regular 2D coordinate grids onto the 3D surfaces, so that numerical quantities can be
computed easily from the resulting models [1]. The mesh-based work contrasts with implicit
methods, which typically define a surface as the level set of a higher-dimensional function
[2]. Relative to level set methods, surface meshes can allow regular 2D grids to be imposed
on complex structures, transforming a difficult 3D problem into a 2D planar problem, with
simpler data structures, discretization schemes, and rapid data access and navigation. Here
we present a new method to parameterize brain surfaces based on algebraic functions. We
find a planar conformal parameterization without any singularities by solving the Yamabe
equation with the Ricci flow method. This method can compute conformal invariants of
brain surfaces which can be used to compare and classify brain surface structures. Compared
with previous brain conformal parametrization work [3, 4], the parameterization provided by
our algorithm does not have any zero points so there is less area distortion. By solving a
harmonic map in the parameter domain, our algorithm provides smooth correspondence
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fields for matching of different brain surfaces while explicitly matching labeled sets of
landmark curves.

1.1. Previous Work
Brain surface parameterization has been studied intensively. Schwartz et al. [5], and Timsari
and Leahy [6] computed quasi-isometric flat maps of the cerebral cortex. Drury et al. [7]
presented a multiresolution method for flattening the cerebral cortex. Hurdal and Stephenson
[8] report a discrete mapping approach that uses circle packings to produce “flattened”
images of cortical surfaces on the sphere, the Euclidean plane, and the hyperbolic plane. The
maps obtained are quasi-conformal approximations of classical conformal maps. Haker et al.
[9] implement a finite element approximation for parameterizing brain surfaces via
conformal mappings. They select a point on the cortex to map to the north pole of the
Riemann sphere and conformally map the rest of the cortical surface to the complex plane
by stereographic projection of the Riemann sphere to the complex plane. Gu et al. [10]
propose a method to find a unique conformal mapping between any two genus zero
manifolds by minimizing the harmonic energy of the map. They demonstrate this method by
conformally mapping a cortical surface to a sphere. Ju et al. [11] present a least squares
conformal mapping method for cortical surface flattening. Joshi et al. [12] propose a scheme
to parameterize the surface of the cerebral cortex by minimizing an energy functional in the
pth norm. Wang et al. [3, 4] have used holomorphic 1-forms to parameterize anatomical
surfaces with complex (possibly branching) topology. Recently, Ju et al. [13] reported the
results of a quantitative comparison of FreeSurfer [14], CirclePack, and least squares
conformal mapping (LSCM) with respect to geometric distortion and computational speed.

1.2. Theoretical Background
Suppose M is a surface embedded in ℝ3, then it has the natural induced Euclidean metric,
denoted by g. Suppose g̃ is another Riemannian metric on M, we say it is conformal to g, if
the two metrics differ by a scalar function u : M → ℝ, namely g̃ = e2u g.

For the purpose of brain mapping, we typically want to flatten the cortical surface onto the
plane, with a specific set of anatomical landmarks are mapped to specific locations, such as
circles in the flattened space;, furthermore, the mapping is required to be conformal. We
formulate this problem as finding a conformal metric that induces the prescribed curvature,
such that all interior points have zero Gaussian curvature, and the boundary points have
constant geodesic curvature. This can be formulated rigorously in terms of the Yamabe
equation [15],

(1)

The Yamabe equation can be solved using the Ricci flow method,

(2)

It has been proven that surface Ricci flow with normalized total area will converge to the
desired metric, and the convergence is exponentially fast.

In practice, all surfaces are approximated by discrete piecewise polygonal surfaces so we
developed a discrete Ricci flow method that applies to triangulated meshes. We associate a
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circle of radius γi with vertex υi. Suppose on edge [υi, υj], two circles intersect each other
with intersection angle ϕij, then the length of the edge can be derived from cosine law as

Therefore, the circle radii and the intersection angles determine a metric on the mesh, which
is called the circle packing metric. By using the circle packing metric, the conformal
deformation can be approximated by changing the vertex radii while preserving the
intersection angles. The discrete Ricci flow can be defined as

(3)

where K̃ is the target curvature at the vertex υi.

Let ui = ln γi, u = (u1, u2, …, un), where n is the number of vertices. Then the following
discrete Ricci energy is well defined

(4)

where u0 = (0, 0, …, 0). The integration path is chosen arbitrarily, namely, the energy is
path independent. Because scaling does not affect the curvature, we confine the u to lie in

the sub-linear space . This energy is strictly convex in this space, therefore it has a
unique global minimum. This global minimum is exactly the desired metric for the
prescribed curvature. The discrete Ricci flow 3 is the negative gradient flow of the discrete
Ricci energy.

In current work, we propose to use the Newton method which is quadratically convergent,
and much faster than previous Ricci flow methods. The Newton method requires
computation of the Hessian matrix of the energy,

1.3. Conformal Mapping to a Multi-Hole Punctured Disk
The algorithm is equivalent solving Equation 1 that describes a conformal deformation. We
use the Ricci flow method [16] to solve this equation.

Algorithm 1 Conformal Mapping to a Multi-hole Punctured Disk

Input: mesh M, step length ε, energy difference threshold δK;

Output: . Here D ∈ R2, and D is a multi-hole disk.

1. Computing initial radii γi for each vertex, and angle ϕij for each edge eij, such that

.

2. Compute boundary loops, denoted as Γ0, Γ1, …, Γn. The Γ0 is the exterior
boundary.
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3. Set target Gaussian curvature of each interior vertex to be zero, K ̃i = 0.

4.
For any vertex on υk ∈ Γ0, set its target Gaussian curvature to , where |Γ0|
denotes the number of vertices in Γ0.

5.
For any vertex on υk ∈ Γi, i ≠ 0, set its target Gaussian curvature to ,
where |Γi| denotes the number of vertices in Γi.

6. Update the vertex radii with the Ricci flow,

7. Update the target Gaussian curvature for boundary vertices, suppose υk ∈ Γi,
suppose ek−1,k, ek,k+1 ∈ Γi, then let Si = Σepq ∈ Γi lpq, then

where Ci is .

8. Repeat step 6 and 7 until the maximal Gaussian curvature error, maxi|Ki − K̃i|, is
less than δK.

1.4. Surface Matching with a Punctured Disk Parameterization
After the computation of conformal parameterizations for open boundary genus zero
surfaces with a multiple-hole punctured disk, we can compute the direct correspondence of
two surfaces by solving a constrained harmonic mapping problem [4]. Given two surfaces
S1 and S2, their punctured disk parameterizations are τ1 : S1 → R2 and τ2 : S2 → R2, we
want to compute a map, ϕ : S1 → S2. Instead of directly computing of ϕ, we can easily find
a harmonic map between the parameter domains. We look for a harmonic map, τ : R2 → R2,
such that τ ∘ τ1(S1) = τ2(S2), τ ∘ τ1 (∂S1) = τ2(∂S2), Δτ = 0. Then the map ϕ can be obtained

by . Since τ is a harmonic map while τ1 and τ2 are conformal map, the
resulting ϕ is a harmonic map.

2.EXPERIMENTAL RESULTS
We tested our algorithm with cortical surfaces extracted from 3D MRI scans of the brain and
we also tested its ability to accommodate constraints with different landmark sets.
Specifically, each of the rows in Figure 1 shows a cortical left hemisphere cortex labeled by
four, seven and twelve landmarks, respectively. After cutting along these landmark curves,
the cortical surface becomes an open boundary high genus surface. Our algorithm
conformally maps the surface to a 3-hole disk (first row), 6-hole disk (second row) and 11-
hole disk (third row). The perimeter of the corpus callosum is mapped to the exterior
circular disk boundary and other landmark curves are mapped to the disk’s inner circle
boundaries.

Figure 2 illustrates how our algorithm is used to match two left hemisphere cortical surfaces.
As shown in Figure 2(a), (b), (d) and (e), we selected four major landmark curves on two
different cortices, to illustrate the approach (thick lines show the precentral and postcentral
sulci, the superior temporal sulcus, and the corpus callosum boundary at the mid-sagittal
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plane). By cutting the surface along these landmark curves, we obtain two genus-3 open-
boundary surfaces. Figure 2(c) and (f) show their conformal map to a 3-hole disk. Because
of the shape difference between two cortices, the centers and the radii of inner circles are
different. By computing a constrained harmonic map from (f) to (c), we have a new
parameterization (Figure 2(g)) of the cortex in the second row ((d) and (e)). The inner circle
centers and radii of the new parameterization are identical to the parameterization in (c).
With the new 3-hole disk as the canonical space, we can easily compute a direct surface
correspondence between two surfaces (a) and (d). Because the inner circles and exterior
circle are identical for the two parameterizations, the landmark curves lying in the surface
are exactly matched to each other. Figure 2 (h)-(m) illustrate the direct surface
correspondence by morphing between these two cortical surfaces. Figure 2(h) and (m) and
surfaces (a) and (d) respectively, viewed from a different viewpoint. (j), (k) and (l) are the
intermediate shapes when linearly interpolating the surface correspondence vector field
between (h) and (m). We can see that although surface shape changes substantially from (h)
to (m), the relative locations of the three landmarks remain the same. This verifies that our
algorithm provides a method to perform surface matching, while explicitly matching sulcal
curves or, potentially, any other landmarks lying in the surface. Although some previous
approaches [3, 4] had the same motivation as ours, because their work introduced
singularities at the so-called zero points, so their surface matching results have some errors
and inevitable distortions in the areas around the zero points. Our approach provides an
improved method for global surface matching with exact landmark matching capability.

3. CONCLUSION AND FUTURE WORK
In this paper, we presented a brain surface conformal parameterization method based on
algebraic functions. With the Ricci flow method, we solved the Yamabe equation to obtain a
conformal deformation that conformally maps open boundary surfaces to multi-hole disk.
We tested our algorithm on the hippocampus and surface models of the cerebral cortex,
including major cortical sulci as anatomical landmark constraints. Used as a canonical
space, the multi-hole disk conformal parameterization provides a brain surface matching
approach that can exactly match landmark curves lying on the surfaces. Compared with
other work that conformally maps brain surfaces to parallelograms, our algorithm offers
some advantages because it does not introduce any singular points. Our future work will
include empirical application of the Ricci flow concept to medical applications in
computational anatomy, including the detection of population differences and the tracking of
brain change over time.
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Fig. 1.
Illustrates conformal maps of the same brain with various landmark sets. Each of the three
rows shows the brain with four, seven and twelve landmarks, respectively. The landmark
curves are labeled by thick blue lines. The last column show their parameterization results
mapping these surfaces to a 3-hole, 6-hole and 11-hole disk, respectively.
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Fig. 2.
Illustrates direct surface matching between two different cerebral cortical surfaces while
explicitly matching landmark curves. (a)-(b) show the left hemisphere of a cortical surface
with four labeled landmarks and (c) shows its conformal map to a 3-hole disk. (d)-(e) show
another left hemisphere model of the cerebral cortex with the same landmarks labeled and
(f) shows its conformal map to a 3-hole disk. (g) is the parameterization of surface (d)-(e)
after a constrained harmonic map from (f) to (c) is built. (h)-(m) show a morphing sequence
from surface (a)-(b) to surface (d)-(e). (j)-(l) are the intermediate shapes when we linearly
interpolate a surface correspondence vector field between the two surfaces (h) and (m).
Although the cortical surface shape changes considerably, the relative positions of the
selected landmark curves do not change.
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