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SEGMENTATION OF HEAD BONES IN 3-D CT IMAGES FROM AN EXAMPLE

S Faisan, N. Passat, V. Noblet R. Chabrier, J.-P. Armspach C. Meyer
LSIHIT, UMR ULP-CNRS 7005 LINC, UMR ULP-CNRS 7191  University hospital of
Strasbourg, France Strasbourg, France Besancon, France
ABSTRACT images are denoted by (if a voxel s is classified as bone

: : f interest,B(s) is set to 1, and to 0 otherwise). To use the
Wi f k f tat f3 . : S
© PrOpOSE a New generic iramework for segmentation o ?nowledge provided by3,,,, we follow an idea similar to [3],

digital data, based on knowledge contained in a segmentat which consists in finding correspondences between parts of
example of similar data. The integration of prior knowledge : X
b g P g and parts off. To this end, the transformation that best

is made by registering the image to segment on the segme{i}—m ) . )

tation example. Since the registration step relies on pinarmdap(sj[ gf“oth fh(t)#ld be e_ﬁn;na_teld. M.OSt reg@ftra?ongeth-

segmented data, segmentation and registration are penﬂorm(l)_ s dedicated 1o the maxiiolacial region are feature-ase
his implies that features have to be extradbefbre regis-

jointly in a coarse-to-fine way using a multiscale paransetri | ) .
Jration. However, as the feature extraction step requies t

representation of a threshold map and of a deformation fiel tthe | hick d bl : Ki
The threshold map is required by the segmentation procedu?’ggmen e image, a chicken-and-egg problem arisesgtakin

which is also devoted to recover topological details. Thebe Into account_Bm 0 segment requires to register on B,
efit of such an approach is illustrated in the context of heatgjmOI the reg|strat|pn of on B, requires to se_gmerit. In
bone segmentation in 3-D computed tomography (CT) im-Order to taf:kle this prpblem, We propose tp jointly perfo_rm
ages. §egmentat|on and registration. The benefit is to progrel?sw
improve, on the one hand, the segmentation quality thanks
Index Terms— Image segmentation, image registration. to the knowledge provided by the registration procedurd, an
on the other hand, the registration accuracy thanks to arbett
1. INTRODUCTION segmentation aof. The paper is organized as follows. In Sec-
tion 2, the proposed method is described. Section 3 presents
Devising reliable and fully automatic segmentation methodresults. Conclusion and perspectives are given in Section 4
for head bones in 3-D CT images is still an open issue, and
few methods in the literature are addressing this problgm [1 2. PROPOSED FRAMEWORK
2]. One of the key points making this task difficult is related

to the nature of CT images, which are subject to noise anfh the proposed method, segmentation and registration are
to severe streaking artifacts due to metal objects suchras deperformed in a coarse-to-fine way based on two multireso-
tal fillings. Another issue is to separate “bones of intérest|ution parametric models: one for the non-rigid transforma
from the other ones. For example, in the context of this worktion, and one for the threshold map. At scaléhe deforma-
bones of the spinal column should not be segmented. Theggn model is estimated by mapping the segmented version
two points are usually tackled using pre- or post-procgssin of  obtained at scalé-1, namelyB'~!, on B,,. Since the

in [2], a metal artifact removal procedure is applied on tie C mapping of! on B,,, becomes more accurate as the scale in-
images before segmentation, and in [1], a post-labellintg®f creases, it can be assumed that the knowledge extracted from
structures of interest is performed after segmentatiock-Ta B, to drive the segmentation dfbecomes more and more
ling all these issues during the segmentation process woulsbnfident (extracted features enable to estimate the thicksh
require the introduction of strong priors. However, extiB¥  map, which is used during the segmentation procedure). The

knowledge remains a difficult task. That is why segmentindiifferent steps of the algorithm, summarized in Alg. 1, are
images based on available segmentation examples is of igescribed in the following subsections.

creasing interest in image processing community. The key
point is to use one or several manually labelled examples t
improve the segmentation of a similar image [3].

In this paper, we consider the segmentation of a 3-D CTThe purpose of registration at scélis to estimate the param-
image of the head, while taking advantage of a referenceters of the deformation model so as to maki' on B,,
segmentatio3,,, of another similar CT imageX,,, has been given a cost function. Before describing the cost functies,
segmented manually by an expert). In the sequel, all binargresent the multiresolution deformation model.

9.1. Registration



Algorithm 1 Joint segmentation and registration (notationssider a distance composed of two terms. The first one, similar

are defined in the text) to the one used in the ICP algorithm, is the sum for each bone
Initialization of segmentation using Otsu’s methdgf’ voxel in B,, of its squared distance to the closest bone voxel
for | = 1tol; do {/*registration loop*} in the floating image. The second term is computed as the sum
Registratibn at scale(Sec. 2.1)A! for each non-bone voxel @8, of its squared distance to the
Knowledge extraction (Sec. 2.2§,,, Z'. . {pé-,; i closest non-bone voxel in the floating image. To alleviage th

computational burden, two chamfer distance maps are used to
compute the cost function. Moreover, to enforce the smooth-
ness of the deformation field, we consider an additional reg-
ularization termEmg(hl) in the cost function, corresponding

to the elastic membrane energy of the deformation field. The
Jacobian/(h') of the mappingh' is constrained to be pos-

Estimation of the threshold map (Sec. 2.359

Initialization of segmentation (Sec. 2.43!0

for r = 1tol — 1 do {/*segmentation loop®
Estimation of the threshold map (Sec. 21{)?
Refinement of the segmentation (Sec. 218)"

e_nd for logv detail _ ' itive in order to ensure the estimated transformation to be a
l(:jl?e topology details recovering (Sec. 2.8. one-to-one mapping [4]. The optimization problem writes fi-
end for

nally as follows:

h! = argmin Z CPpgi-1(h'(s))+

J(hY) >0 . _
Lets 2 [x,y,z]t be a voxel of an image defined on = SGQ’BT(S)_I . (1)
Q = [0,1]*. The mappingh between the source and the Z CBpi-1(h(8)) + ACEeq(h),
target image writeg (s) = s + u (s), wherew is the dis- 8€%Bm (8)=0

placement vector field. We consider a decomposition of thevhereC Pgi-1(s) andC Bp:i-1(s) stand respectively for the
displacement vector field over a sequence of nested sub-squared distance between the voxednd the closest bone
spaced’; C Vo C ... C Vi, C Vi, defining a multireso- point in B'~!, and the squared distance betweeand the
lution approximation of:. Spacé/; defines the coarsest scale closest non-bone voxel aB'~1. )\ is the weighting factor
representation. A basis & may be generated from a scaling of the regularization term (it has been set to 1 in our experi-
function®. To handle a 3-D deformation field, three multires- ments) and”' a scaling factor computed at the beginning of
olution decompositions are considered, one for each compeach scale so that the data energy term&ng are compara-
nent of the displacement. First degree polynomial spliaé sc ble. Estimation of the parameters is made using the blogkwis
ing function® is considered in this work [4] so that the sup- constrained gradient descent algorithm described in [4].
portQ2. , , of the spline(i, j, k) € [1...2! —1]3, is a cube of

size2! =t x 21=1 x 21~ (the image is defined o = [0,1]®).  2.2. Knowledge extraction

The parameters of the deformation model are estimateg way to segment is to transport the segmentatié, onto

by mi_nimizing a cost function. Th(_e cost function qluarlltifiesl_ However, the quality of such a segmentation depends on
the dlstancg between t_WO binary images, nanﬂy ,(h ) the registration accuracy. Suppose that the maximal regis-
andB,,. This problem is often tackled by considering only ;..o "arror at scalé along the x-, y- OF z-axiS¢mas (b))
surfaces of the segmented structures and by using the lter,

. . i "€ known (estimation of,,,. (k') is discussed at the end of
tive Closest Point (ICP) algorithm [5]. The energy functionpis section). The first extracted knowledge is an area, de-

consists in summing for each point of the floating surface it?'notele which corresponds to all voxels défwhich may

. . boi?
squared_dlstance to the (?IOS?St pomt on the target sullépeer possibly correspond to bones of interest with regard to the
resentation. However, this criterion, at first proposedifgid

. o : _ o registration accuracy at scale Z; ; is merely obtained by
registration, is not s_wtable for afflne_ or non-rlglq traorsf fransporting the segmentation méap, on I and by dilating
mation [6]. Indeed, if the whole floating surface is matche_ his transported segmentation map with a cubic structiging

to a single point on the target surface, the energy funcgon igant of sizeemam(hl). Transporting the segmentation map

zero, corresponding to an obviously aberrant solution.—Coan on I requires the computation of the reverse transforma-

sequently, when registering a surface onto another one with 1 . . NP

affine or non-rigid transformation, a shrinking of the watpe tion h. The inversion of the defprmatlon field 'S done us-
surface may be observed. To circumvent this phenomenomg a nun_1er|cal scheme based on interval analysis techgiique
some methods match points which have similar local shap@1Ot published yet). . .
features [6, 7]. We propose another way to handle this prob- | "€ Sécond extracted knowledge is the bone ?éthc In

lem based on the following observation: the ICP algorithmZsoi 1 ;.. (S€€ 2.1 for the definition ] ; ,, and Fig. 1
converges towards an aberrant solution since it consiaiys o for a graphical representation &f andpﬁ';; ) computed as

the points of interest and not the other points, which hase al follows:

to be matched. Consequently, to compute the distance be- Lr  _ |Z7l~ef N er,j,k| @)
tween the floating segmentatidi~—* (k') and B,,,, we con- BRIz ]



Zhi: voxels of I which may P bone ratio in number of voxels in the same area corresponding to non-bone
T, N2, voxels although their gray-level is greater than or equalgo
= A continuous model of the threshold map is used in order
to prevent block effects in the segmentation. The map is mod-
eled using a hierarchical representation based on a firstdeg
polynomial spline scaling function similar to the one used f
gray-level of . . . .
IinZ, modelling the deformation field. Moreover, an additional pa
rameter, denoted-?, is used to model a constant threshold.

The threshold mag;" is derived from the set of thresholds

possibly correspond to bones

- sy *,l,r i
Zf,ef: segmentation probability density functions of {Xi,j,k } N_Ioreover’ fora Voxeb’ which does not belong to
map By, bone gray levels, pf’(.), and Z},,;» or which belongs to a volumg} , NQ; . , for which the

transported on I non-bone gray levels, pli(.), in Zj,,;

threshoIdXi*’jl’,: is greater than all gray-levels &, Nk
Fig. 1. Extracted features (left) used for the estimation of[éxr(s) is set to+oo, since no bone is expected.

X1 (right).

2.4. Segmentation

Zﬁef corresponding to the segmentation niap transported The head bones present non-trivial topological properties
on/ (see Fig. 1). The size 817 , ,, characterized by scale  They are composed of two connected components (mandible
must be large with respect to the accuracy of the registratio bonevs. other bones), and present holes (foramina) and cavi-
in order to guarantee a reliable estimationpé§7k. Conse- ties (sinuses) - refer to [8] for classical topological diiims
quently, onlyr’s lower than or equal té-1 are considered. used in this section. Most of these topological propertogs ¢
Concerning the estimation of the maximal registration errespond to fine details in CT images (the diameter of holes is
ror at scald, eq. (h') is set empirically to the quarter of size generally small, such as the distance between the connected
of a spline support at scaleThis setting has been validatad components). Thus, from a simplified point of view, the head
posteriori by the quality of the results. A more confident es-- when considered at a coarse resolution - can be modeled as
timation of e,,4.(h') is under investigation by learning reg- a simply connected object.¢., an object composed of one
istration errors on some characteristic points defined by aconnected component), with no holes and no cavities. At a
expert on a database of images. finer resolution, it presents more specific topological itketa
Based on these assumptions, it can be justified to propose
a topology-controlled segmentation process, composed of
a procedure of homotopic deformation from an initial ob-
Features extracted during the previous step are used for gect topologically equivalent to the head from a coarse {poin
timating the threshold maf, which is required by the seg- of view, and followed by a topology modifying procedure
mentation procedure. During the segmentation step, a voxelevoted to recover the finer topological details of the head.
s, whose gray-level(s) is greater than or equal #o(s), will Actually, the segmentation process can be split into three
be considered as bone, whereas a vaxalhose gray-level distinct steps. The first one is the “initial” head segmeatat
I(s) is smaller thanl;(s), will be considered as non-bone, (i.e, whenr = 0, at each scal&). A simply connected ob-
unless topological constraints imply the contrary. ject is obtained by performing a homotopic reduction on the
The threshold map is estimated in a coarse-to-fine wawhole image support. The second step consists in refining
(from scaler=0 tor=i-1) thanks to the set offeaturéﬁﬁ’);k}. the segmentatioB*” (1 < r < [ — 1) from the informa-
For a givenr, the basic idea consists in estimating for eachtion carried out by the segmentatiéti” !, the imagel and
volume ! ;. N Z},; a thresholdX "/ (see Fig. 1). The the threshold mag/". This step is ensured to preserve the
threshold X"/ is computed by minimizing a Bayes risk, topology by removing or adding simple points. The third step
which is computed from the prior probabil'wl’;k (expected consists in recovering the fine topology details of the abjec

b fio inz! . A O d two likelihood t ihe ODtained from the last segmentati@!~!. It performs the
one ratio inZ,,; N € ; ), and two likelihood terms (the following operations: recovery of cavities, separatiorcofi-

probability density functionspdfs) of the gray-levels it;,;  nected components, and finally, recovery of holes. Note that
for bone voxels,p;"(.), and for non-bone voxels:’; (.)).  inthe preliminary version of the proposed method, this &tep
Gaussiarpdfs are considered. They are estimated for a givemot yet driven by “a priori” knowledge. However, informatio

r using the segmentatioB""~* if » >0, and B'~! other-  on the localization and size of the cavities (corresponting
wilse. More precisely, given a threshak, the Bayes risk  sinuses), on the number of connected components and on the
C;7; x(Xo) is defined as the sum of two terms: the number ohumber of holes can be extracted from the segmented exam-
expected voxels it} Ny ; ,, corresponding to bone voxels ple to drive and constrain the segmentation process indurth
although their gray-level is lower thaki, and the expected works.

2.3. Bayesian estimation of the threshold map



3. RESULTS extracted features of the example do not exactly correspond
to the properties of the image to segment, the data term of

The proposed framework was applied to a datas8oET  the Bayesian rule may drive the segmentation to the good
images. The final scale, denotid has been set toin our  solution.
experiments. As the size of the image is 236e size of final
spline supports is®8 The proposed approach was compared 4. CONCLUSION AND PERSPECTIVES
with Otsu’s method. An illustrative example of segmenta-
tion results is shown in Fig. 2. The first row represents ongye proposed a scheme to segment complex structures based
CT image of the dataset in coronal, sagittal and axial viewspn an available segmented example. Results obtained in the
The second and third rows represent the segmentationsesufiontext of head bone segmentation in 3-D CT images high-
obtained with Otsu’s method and the proposed approachight the interest of the approach. Moreover, the proposed
respectively. The Otsu’s method is very sensitive to noisg¢ramework is versatile and may be extended. For example,
(spongy bones are sometimes not well segmented) and to agrther work will consist in using more intensively the tepo

tifacts which corrupt CT images (metal objects such as dentdogical knowledge of the segmented example to drive the seg-
fillings lead to severe streaking artifacts). Results ol@di mentation/registration process.

by jointly performing registration and segmentation are&emu
satisfactory. These good results are largely explainedhby t
features provided by the reference image and, to a lesser

extent, by the topologically-controlled segmentationg@ss  [1] s. | ongaric and D. Kovatevi€, “A method for segmenta

(a more intensive use of topological knowledge is under in- ~ +ion of CT head images,” iMCIAP (2), 1997, pp. 388—
vestigation). Moreover, contrary to the Otsu’s method, the 395 ’ , ’

proposed method allows to segment only the structures of

interest (the spinal column does not appear in the third ronf2] D. Vandermeulen, P. Claes, R. Suetens, S. De Greef, and
thanks to the knowledge provided 83;,,. Finally, the pro- G. Willems, “Volumetric deformable face models for
posed approach has shown to be robust to the variability of cranio-facial reconstruction,” ihSPA, 2005, pp. 353-
human head. As an example, subjects with no teeth have also 358.

been well-segmented. This illustrates the fact that, elvitnei
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