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ABSTRACT

Accurate knowledge of an imaging system’s point spread

function (PSF) is crucial for successful deconvolution. For

fluorescence microscopy, PSF estimations based on either

theoretical models or experimental measurements are avail-

able. However, due to the axially shift-variant nature of the

PSF, neither method guarantees an estimate that is valid for

the entire object space. In this work, we present a reduced-

parameter version of a state-of-the-art theoretical model. We

give a maximum-likelihood based algorithm for the estima-

tion of its parameters, and we show how a fit of our model to

two axially isolated point source measurements in an exper-

imental setup can be used to accurately reproduce measured

PSFs within the entire specimen.

Index Terms— Deconvolution, Fluorescence microscopy,

Maximum-likelihood, Point spread function

1. INTRODUCTION

For the deconvolution of microscopy data, precise knowledge

of the acquisition system’s point spread function (PSF) is

highly desirable, due to its critical influence on the quality

of the restoration results [1]. In order to obtain a suitable

estimate, the PSF can be modeled theoretically, by taking

into account the system’s optical parameters and properties,

or measured experimentally, by recording the 3-D image

of sub-resolution point sources. The principal difficulty in

obtaining a representative model resides in the strong axial

shift-variance observed under most experimental conditions

[2]. This originates from the mismatch that generally occurs

between the refractive indices of the immersion medium and

the specimen, which results in increasingly strong aberrations

as the point source moves deeper into the specimen [3].

A theoretical approach has the advantage of generating a

diffraction-limited model that can be evaluated for the entire

object space, but, due to the difficulty of accurately determin-

ing a modern system’s parameters, the result is not guaranteed
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to match experimental conditions. Conversely, an experimen-

tally measured PSF is a locally accurate representation of the

system’s properties, but is usually not globally valid due to the

axial shift-variance. Furthermore, the procedure often gets te-

dious, as several measurements need to be averaged due to

noise degradation and background fluorescence.

In this paper, we propose a combination of both ap-

proaches that aims at providing a theoretical representation of

actual experimental conditions. This is achieved by fitting a

parametric theoretical model to experimental measurements.

However, most experimentally validated PSF models depend

on a large number of parameters, which renders them un-

suitable for a global optimization approach. We derive a

reduced-parameter version of the scalar model proposed by

Gibson and Lanni [3]. We also present a framework of image

formation that takes into account various sources of noise,

as well as detector pixelation. Subsequently, we describe

the maximum-likelihood (ML) estimation for the relevant

parameters, and show that our model correctly predicts mea-

surements in an experiment where fluorescent beads are

embedded at different depths. Fitted to two measurements at

the axial extremes of the observed object space, we evaluate

our model for intermediate axial positions and compare the

result with the corresponding bead measurements.

2. IMAGE FORMATION MODEL

State-of-the-art scalar [3] and vectorial [4] models describe

phase aberrations based on the computation of the optical path

difference (OPD) between design conditions and experimen-

tal conditions in the sample setup [5]. These optical paths are

calculated over the three layers that are present in every sam-

ple setup: the immersion layer, the coverslip, and the spec-

imen layer, with reference and experimental values for the

thickness and refractive index of each. This gives rise to a

number of unknown parameters that renders a global fit of the

model to an experimental measurement ill-posed; i.e., differ-

ent combinations of parameter values can result in the same or

in a highly similar phase aberration. Furthermore, index mis-

matches originating from these three layers are not the only

possible sources of aberration. Many high-NA objectives are

equipped with a corrective ring designed to compensate for
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aberrations induced by a mismatched coverslip thickness. As

the calibration of this ring is performed empirically, a rigorous

model would require an extension rather than a simplification

of the OPD. In order to achieve a sufficient degree of simplic-

ity, we introduce a model based on two layers only: the stan-

dard specimen layer, and a layer combining all others. As we

will see, the mismatch of refractive indices between these two

layers is sufficient for representing mismatch-induced aberra-

tions in the PSF. Note that this model is still exact when the

immersion medium and coverslip conform to design condi-

tions.

We start by introducing the scalar PSF that our model

is based on, and give the corresponding OPD term. Subse-

quently, we formulate a general model for acquisition noise,

and briefly discuss the effects of discretization and pixelation

by the CCD array.

2.1. PSF model

Phase aberrations are most accurately characterized by the

vectorial models proposed by Hell et al. [4] and Török et al.

[6]. These models are computationally costly, however, and

offer no significant gain in accuracy for the application dis-

cussed here with respect to the scalar one proposed by Gibson

and Lanni [3]. The latter model takes the general form

h(x,xp;p) =
∣∣∣∣A

∫ 1

0

eiW (ρ,x,xp;p)J0 (krNAρ) ρ dρ

∣∣∣∣
2

, (1)

where x = (x, y, z) is a point on the image plane in ob-

ject space, xp = (xp, yp, zp) are the coordinates of the point

source, p = (NA,n, t) is a parameter vector containing the

optical parameters of the system: numerical aperture (NA),

refractive index (n) and thickness (t) of the individual lay-

ers, r =
√

(x− xp)2 + (y − yp)2, A is a constant amplitude,

and J0 denotes the Bessel function of the first kind of order

zero. For ease of notation, all coordinates are expressed in

object space, which implies that we consider the image space

to be demagnified and projected into object space. The phase

term W (ρ,x,xp;p) = k0Λ(ρ,x,xp;p), where k0 is the vac-

uum wave number, is defined by the optical path difference

Λ(ρ,x,xp;p) between the actual and ideal imaging condi-

tions (further details are given in [3, 7]).

2.2. Reduced-parameter OPD model

For a simplified model consisting of two layers (see Fig. 1),

we define the OPD as

Λ(ρ,x,xp;p) = zp

√
n2

s −NA2ρ2 − t∗c

√
n2

c∗ −NA2ρ2

+
(

zp − zn + nc

(
− zp

ns
+

t∗c
n∗

c

))√
n2

c −NA2ρ2,

(2)

where zn denotes the position of the focal plane, and nc and

ns denote the refractive indices of the combined layers and
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Fig. 1. Schematic representation of the optical path differ-

ence. Design conditions are satisfied when the source is lo-

cated at the specimen/coverslip interface, and no index mis-

matches occur. The red rays illustrate deviations from these

conditions for sources located at arbitrary depths.

specimen layer, respectively. The parameters n∗
c and t∗c are

the design values for the refractive index and thickness of

the combined layers. In the Gibson and Lanni model, mis-

matched values for the coverslip and immersion medium con-

tribute to the phase aberration individually. In practice, how-

ever, a corrective ring on the objective serves to minimize the

contribution of coverslip-induced aberrations, which justifies

our proposed approximation. Consequently, the appropriate

reference values for this layer are given as the working dis-

tance of the objective for t∗c , and the design refractive index

of the immersion medium for n∗
c .

2.3. Noise model

The dominant sources of noise in fluorescence microscopy are

shot noise, background noise due to autofluorescence of the

sample, and read-out noise. Whereas the first two obey Pois-

son statistics, the latter is Gaussian distributed, which calls

for an additive noise model. The Poisson distribution rapidly

converges towards a Gaussian one with equal mean and vari-

ance, given that the variance is large enough (this is usually

considered the case when σ2 > 10, and is a valid assump-

tion for the read-out noise observed in our measurements).

Taking this into account, we establish a general noise model

where we formulate the expected photon count q̄(x,xp;p)
corresponding to a point x in object space as

q̄(x,xp;p) = c · (h(x,xp;p) + σ2
b

)
, (3)

where c is a conversion factor and σ2
b is the variance (in inten-

sity) of the read-out noise. To simplify the notation, we will

omit the argument (x,xp;p) when it is clear from the con-

text. The probability of detecting q photons at x is then given
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by

P (q(x,xp;p)) =
e−q̄(q̄)q

q!
. (4)

2.4. Pixelation

The pixelation of the detector has a non-negligible effect on

the measured intensity distribution of a point source, and must

therefore be taken into account by the model. Hereinafter, we

assume that a point of observation x represents a pixel on the

CCD, and thus that, when appropriate, functions of x incor-

porate integration over the pixel’s area (pixels are assumed to

be contiguous and non-overlapping).

3. ESTIMATION ALGORITHM

A fit of the proposed model to experimental data requires the

estimation of the following parameters: the positions zn of

the acquisitions, the position zp of the point source, and the

refractive indices nc and ns. Performing a global fit for all pa-

rameters would still involve a large search space. Therefore,

our algorithm relies on a specific experimental setup; i.e., it

requires at least one point source to be located at the speci-

men/coverslip interface, which is straightforward to achieve

in practice (details are given in Section 4.1). For a source lo-

cated at this interface, the only remaining parameters in the

OPD are zn and nc (since zp = 0). Furthermore, in the

presence of aberrations, the intensity maximum of the PSF

is shifted with respect to the position of the source. Although

this shift is nonlinear and cannot be expressed in closed form,

it can be exploited to estimate the positions zn of the acquisi-

tions, assuming that the other parameters are known.

A reliable fit is obtained by performing the following es-

timation procedure:

1. ML estimation of nc, using the intensity-shift property

to interpolate for zn.

2. ML estimation for the fine-scale adjustment of zn. This

yields a global reference for all acquisition positions in

the experiment.

Values for the remaining two parameters are estimated in

similar fashion; instead of a point source at the speci-

men/coverslip interface, a source at the farthest relevant point

in the sample is selected. The intensity shift is exploited

during the ML estimation of the refractive index ns, after

which the position xp is localized to higher accuracy using

the appropriate ML estimator.

3.1. Maximum-likelihood estimators

We now provide a general description of the ML estimators

used by our algorithm. The joint probability of observing a

given spatial distribution q(x,xp;p) of photons emitted by a

source located at xp is given by

∏
x∈S

P (q(x,xp;p)), (5)

where S is the set of voxels in the acquisition. By maximizing

the likelihood of Eq. (5) with respect to a parameter θ, we

obtain the basis for our estimators:

∂

∂θ
ln

∏
x∈S

P (q) =
∑
x∈S

∂q̄

∂θ

(
q

q̄
− 1

)
≡ 0. (6)

Since there is no closed-form solution for θ in the above

expression, we take the first-order Taylor approximation of

the maximum-likelihood function around an estimate θ̂ of θ,

which gives us the following iterative expression:

θ(m+1) = θ(m) −

∑
x∈S

(
∂q̄
∂θ

(
q
q̄ − 1

))

∑
x∈S

(
∂2q̄
∂θ2

(
q
q̄ − 1

)
−

(
∂q̄
∂θ

)2
q

(q̄)2

) , (7)

where m denotes the iteration.

4. RESULTS

We first evaluated the performance of the proposed model and

algorithm for synthetic data, which was generated based on

the complete Gibson and Lanni model. Parameter values were

retrieved without any significant loss in accuracy as compared

to a fitting approach that operates on all acquisitions simulta-

neously.

4.1. Experimental setup

For the experimental validation of our model, we prepared

samples consisting of fluorescent beads (170 nm PS-Speck

microspheres from Invitrogen) distributed over a thick layer

(> 20 μm) of mounting medium. A diluted solution of beads

was dried onto a coverslip and embedded in a solid mounting

medium (Dako GlycerGel). The sample was then imaged us-

ing a 63×, 1.4 NA oil immersion objective from Leica (HCX

PL APO CS). Following standard experimental procedure, the

correction ring on the objective was calibrated on a Leica

TCS-SP2 AOBS confocal microscope, in order to minimize

coverslip-induced aberrations.

The results from fitting our model to these measurements

are shown in Fig. 2. In Fig. 2-(a), an xz-section of a bead

located at the coverslip/specimen interface is shown (note its

slight asymmetry); an analogous section of a source located

at the other extremity of the acquisition volume is shown in

Fig. 2-(e). The output of the fitting algorithm is shown under

(b) and (f), respectively. Using the resulting parameterization
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Fig. 2. Fit of the proposed model (b, d, f) to a set of experi-

mental measurements (a, c, e). Details are given in the text,

in Section 4.1.

of the model, the position xp of the intermediate sources can

then be localized; an example of an acquisition is shown in

Fig. 2-(c), with the corresponding localized fit in Fig. 2-(d).

An optimal correspondence between the model and experi-

mental data is obtained.

4.2. Discussion

The quality of the fitted model for experimental data is highly

promising for the application of shift-variant deconvolution

[8]. Calibrating the model by means of isolated point sources

in the sample is feasible to implement in practice; a similar

sample preparation to the one described can be used to in-

clude fluorescent beads in a biological specimen. The results

presented in this paper are also relevant for shift-invariant de-

convolution, where a model that matches experimental con-

ditions and correctly reproduces the asymmetry of the PSF

for a source at a given depth within the specimen can lead to

noticeably improved deconvolution results [2].

The proposed approach is also computationally efficient;

in our implementation, the evaluation of a PSF on 106 points,

together with the relevant derivatives, is achieved in less than

1.3 seconds (on a 2.66 Ghz Intel Xeon CPU).

Future work includes validation of the model on more

complex, biological samples, where the refractive index in the

specimen can undergo local variations, as well as the applica-

tion of our model to shift-variant deconvolution.
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