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ABSTRACT
In the field of image segmentation, most of level-set-based

active contour approaches are based on a discrete represen-

tation of the associated implicit function. We present in this

paper a different formulation where the level-set is modelled

as a continuous parametric function expressed on a B-spline

basis. Starting from the Mumford-Shah energy functional, we

show that this formulation allows computing the solution as

a restriction of the variational problem on the space spanned

by the B-splines. As a consequence, the minimization of the

functional is directly obtained in terms of the B-splines pa-

rameters. We also show that each step of this minimization

may be expressed through a convolution operation. Because

the B-spline functions are separable, this convolution may in

turn be performed as a sequence of simple 1D convolutions,

which yields a very efficient algorithm. The behaviour of

this approach is illustrated on biomedical images from vari-

ous fields.

Index Terms— Level-set, B-spline, Variational methods

1. INTRODUCTION

Level-set based formulations have become a well-established

tool in the field of image processing [1, 2]. In image segmen-

tation, level-set-based methods corresponds to a class of de-

formable models where the shape to be recovered is captured

by propagating an interface represented by the zero level-

set of a smooth function (usually called the level-set func-

tion). The evolution at the interface is generally derived from

a variational formulation: the segmentation problem is ex-

pressed as the minimization of an energy functional reflect-

ing the properties of the objects to be recovered. Formally,

the minimization of this functional provides the evolution of

the level-set function as a time dependent partial differential

equation (PDE), which is usually solved using finite differ-

ences schemes [2].

In contrast with this now well-known discrete scheme, we

present a continuous approach, where the level-set function

is expressed as a continuous parametric function using B-

splines. A similar idea has recently been developed in [3, 4],

where the continuous representation is based on radial basis

functions (RBFs), which are then used to solve the level-set

PDE. In contrast with these approaches, we start from the ini-

tial level-set energy functional and propose to specify the so-

lution as a restriction of the variational problem on a space

spanned by B-spline basis functions. As a consequence, the

minimization of the functional is directly obtained in term of

the B-splines parameters.

The paper is structured as follows: In Section 2, we recall

the general form of the level-set energy functional, describe

the B-spline formulation of the problem and derive the min-

imization of the functional in terms of the B-spline parame-

ters. In particular we show how the gradient of the functional,

hence the evolution of the level-set, may be expressed as a

convolution. We discuss implementation issues of the method

in Section 3. We show in particular how reinitialization of the

level-set may be avoided by normalizing the B-splines param-

eters. In Section 4, we evaluate the behavior of the method

using biomedical images. The main conclusions and perspec-

tives of this work are given in Section 5.

2. PROBLEM FORMULATION

Let Ω be a bounded open subset of R
d and let f : Ω �→ R be

a given d-dimensional image. In the level-set formalism, the

evolving interface Γ ⊂ R
d is represented as the zero level-set

of a Lipschitz-continuous function φ that satisfies⎧⎪⎨
⎪⎩

φ(x) > 0, ∀x ∈ Ωin (1)

φ(x) < 0, ∀x ∈ Ωout (2)

φ(x) = 0, ∀x ∈ Γ, (3)

where Ωin is a region in Ω bounded by Γ = ∂Ωin. The region

Ωout is defined as Ω \ Ωin.

2.1. Energy criterion

We consider in the following the classical problem of seg-

menting one object (possibly having several nonconnected

components) from the background. This problem is typically

handled by the evolution of one level-set whose steady state
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partitions the image into two regions delimiting the bound-

aries of the object to be segmented. In this framework, we

use the well-known Chan-Vese functional [5], which aims at

partitioning the image into regions with piecewise constant

intensity. This approach corresponds to a particular case of

Mumford-Shah functional [6], known as the minimal parti-

tioning problem. The corresponding functional is given as:

J(φ, μ1, μ2) =
∫

Ω

(f(x)− μ1)
2

Hε(φ(x)) dx1 · · ·dxd

+
∫

Ω

(f(x)− μ2)
2 (1− Hε(φ(x))) dx1 · · ·dxd

+ ν

∫
Ω

‖∇φ(x)‖ δε(φ(x)) dx1 · · ·dxd, (4)

where (μ1, μ2) are the two parameters of the energy function,

and where ν is a hyper-parameter that balances the influence

of the regions terms (first and second integrals) and of the

contour term (third integral). The functions Hε(·) and δε(·)
are C∞ regularized versions of the Heaviside and of the Dirac

functions, the latter being the derivative of the former.

2.2. B-spline level-set model

The model is obtained by expressing the level-set function

φ(x) as the linear combination of B-spline basis functions [7]

φ(x) =
∑
k∈Zd

c[k]βn(
x
h
− k). (5)

Here, βn(·) is the uniform symmetric d-dimensional B-spline

of degree n. This function is separable and is built as the

product of d one-dimensional B-splines, so that βn(x) =∏d
j=1 βn(xj). The knots of the B-splines are located on a

grid spanning Ω, with a regular spacing. The coefficients of

the B-spline representation are gathered in c[k].

2.3. Functional minimization

In order to reach a local minimum of energy criterion (4),

we use a conventional Expectation Maximization (EM ) tech-

nique. First, keeping φ (i.e. c[k]) fixed, we minimize the en-

ergy criterion with respect to μ1 and μ2. These parameters

are then given as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ1 =

∫
Ω

f(x)Hε(φ(x)) dx1 · · ·dxd∫
Ω

Hε(φ(x)) dx1 · · ·dxd

μ2 =

∫
Ω

f(x) (1− Hε(φ(x))) dx1 · · ·dxd∫
Ω
(1− Hε(φ(x))) dx1 · · ·dxd

. (6)

Then, keeping μ1 and μ2 fixed, we minimize the energy

criterion with respect to the level-set model. In the classical

variational settings, this step is performed using either Euler-

Lagrange equations [5] or the Fréchet/Gâteaux derivatives [8,

9]. In contrast with these approaches, we use the B-spline

formulation (5) and perform the minimization with respect

to the B-spline coefficients c[k]. Such minimization implies

computing the derivatives of (4) with respect to each B-spline

coefficient c[k0]. These derivatives may be expressed as:

∂J

∂c[k0]
=

∫
Ω

w(x)βn(
x
h
− k0) dx1 · · ·dxd, (7)

where

w(x) =
(
(f(x)− μ1)

2 − (f(x)− μ2)
2 −

ν div(
∇φ(x)
‖∇φ(x)‖ )

)
δε(φ(x)).

(8)

Here, w(x) reflects the features of the object to be segmented

and will be called the feature function in the sequel. The min-

imization of energy criterion (4) with respect to the B-spline

coefficients does not lead to a closed-form solution. In or-

der to obtain a local minimum, we then perform a gradient

descent method which yields

c(i+1) = c(i) − λ ∇cJ(c(i)), (9)

where ∇c corresponds to the gradient of the energy relative

to the B-spline coefficients. The corresponding expression is

given as:

∇cJ =
∂J

∂c[k]
=

∫
Ω

w(x)βn(
x
h
− k) dx1 · · ·dxd. (10)

This last equation shows that the computation of the gradi-

ent of J with respect to a set of B-spline coefficients may be

interpreted as convolving the feature function w(x) with the

B-spline βn(x), and sampling the result on a grid spanning

Ω, with a regular spacing.

2.4. Discretization: gradient calculation as a discrete sep-
arable convolution

In practice, the feature function is usually available only on a

discrete grid. Let us call w[u] the corresponding discrete fea-

ture function, with u ∈ Z
d. By applying the discrete B-spline

formulation of [10], we immediately obtain the discrete ver-

sion of (10). The centered d-dimensional discrete B-spline of

degree n is noted bn[u]; it is obtained by sampling its con-

tinuous version βn(x) at integer values. Similar to its con-

tinuous counterpart, the sequence bn[·] is separable and is

built as the product of d one-dimensional B-splines, so that

bn[u] =
∏d

j=1 bn[uj ]. The discrete version of the formula-

tion is then obtained from (10) as

〈∇cJ〉 [k] =
〈

∂J

∂c[k]

〉
=

∑
u∈Zd

w[u] bn
h(u − hk). (11)

The energy gradient thus corresponds to the convolution of

the feature image and the B-spline i.e.

〈∇cJ〉 [k] = (w ∗ bn
h) [mk]. (12)
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This last expression provides an efficient way of calculating

the gradient and thus the evolution of the level-set through

(9). Since the B-spline kernel bn
h[u] is separable, the gradient

may indeed be computed as a simple series of d convolutions

of the feature image with a one-dimensional B-spline kernel,

followed by downsampling by h. In practice, we use mirror

boundary conditions.

3. IMPLEMENTATION

3.1. Bounded Level-Set

In the course of propagation, the level-set function may de-

velop steep or flat gradients, which, in turn, yield inaccuracies

in the numerical approximation [11]. This is usually taken

into account in classical implementations by reshaping the

level-set through periodical re-initialization of the level-set

function as the distance function to the zero level. As noted

in [11], such a strategy makes the level topologically less flex-

ible, since it prevents the level-set to develop new contours

(i.e., new zero-level components). As shown in [4], bounding

the level-set function allows one to avoid this re-initialization

step, making the solution topologically more flexible. Such

a bounding may be easily performed due to the fact that the

level-set function is expressed as a linear combination of basis

functions. Using B-spline properties, it can be easily shown

that the �∞-norm of the B-spline coefficients provides us with

a bound on the level-set function, i.e. formally:

|φ(x)| ≤ ‖c‖∞ . (13)

Hence, we can normalize the level-set function to the range

[−1, 1] by the following simple modification of the initial al-

gorithm provided by (9):

c(i+1) = c(i) − λ ∇cJ(c(i)), (14)

c(i+1) ← c(i+1)∥∥c(i+1)
∥∥
∞

. (15)

3.2. Gradient descent algorithm

The minimization of the energy given in (9) is implemented

using a gradient descent with feedback step adjustment. At

each step i, a candidate update ci+1 and the associated energy

are computed from the current estimate ci using (9). If this

update yields the energy to decrease, the step is considered as

successful, the corresponding B-spline coefficients ci+1 are

accepted and the step size λ is multiplied by a factor αf ≥
1. Otherwise, a more conservative update is calculated by

dividing the step size by α
′
f ≥ 1, and the test is repeated.

4. EXPERIMENTS

We now validate the proposed approach by considering its

application to various types of biomedical images. In all ex-

periments, the images have an eight-bit dynamics and their

dimension is 256d (where d is the number of dimensions).

A cubic B-spline function is used as a basis for the level-set

representation. The parameters of the gradient descent step

adjustment are fixed as αf = 1 and α
′
f = 1.5. In each case,

the level-set is initialized using the following implicit func-

tion: φ0(x, y) = −√
(x − 128)2 + (y − 128)2 + 110.

We give in Figure 1 an example of segmentation of a flu-

orescence microscopic image of yeast. The curvature term is

applied in this example by setting ν = 0.01 ∗ 2552. Figure

1(b) shows the final segmentation, where the multiple com-

ponents in the image are detected thanks to the topological

flexibility of the level-set. The final result is obtained in 6
seconds cpu time.

(a) Initialization (b) final result, 29 iterations

Fig. 1. Segmentation of a fluorescence microscopic image of

yeast with curvature weight ν = 0.01 ∗ 2552, cpu = 6s

We give in Figure 2 an example of application of the ap-

proach on a fluorescence microscopic image of a cell. The

curvature term is applied in this example by setting ν = 0.02∗
2552. Figure 2(b) show the final segmentation.

(a) Initialization (b) final result, 13 iterations

Fig. 2. Segmentation of a fluorescence microscopic image of

cell with curvature weight ν = 0.02 ∗ 2552, cpu = 5s

As shown in Figure 3, we have also applied the proposed

segmentation approach to a 3-D image of a calcaneus bone,

acquired on a micro-CT with a voxel size of 80μm3. The

segmentation was obtained without curvature term to preserve

the details structure of the calcaneus bone structure. We pro-

vide in Figure 3 a 3-D visualization of the resulting segmen-

tation, as well as two image slices. These results show the

ability of the model to handle complex topology.
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(a) (b)

(c)

Fig. 3. Segmentation of 3-D micro-CT images of a calcaneus

bone. Level-set model without any curvature term (ν = 0).

(a)–(b) Two slices through the original data volume, along

with the obtained contours; (c) 3-D rendering of the resulting

segmentation. The cpu time is 540 s.

5. CONCLUSIONS

We proposed in this paper a new formulation to level-set-

based active contours, where the implicit function is mod-

elled as a continuous parametric function expressed on a B-

spline basis. This representation provides an overall control

of the level-set, and allows avoiding the reinitialization step of

the level-set via the normalisation of the B-spline parameters.

The B-spline formulation allows to express the level-set evo-

lution as a sequence of 1D convolution, yielding an efficient

algorithm. The behaviour of the proposed approach has been

evaluated from biological images from various field. The ob-

tained segmentation results show the interest of the method in

terms of computation time and flexibility.
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