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ABSTRACT
This paper deals with the problem of time-resolved fluores-
cence diffuse optical tomography. We propose a new recon-
struction scheme based on a multi-resolution approximation
of the time-resolved signals. The underlying basis functions
are exponential B-splines that are matched to the decay of
fluorescence signals. We illustrate the applicability of the
method on phantom data.

Index Terms— Fluorescence diffuse optical tomography
(FDOT), time-resolved FDOT, exponential B-splines.

1. INTRODUCTION

Fluorescence Diffuse Optical Tomography (FDOT) aims at
localizing and quantifying fluorescent markers within biolog-
ical tissue, with light in the near infra-red range. The prin-
ciple of this method is to use the fluorescence light that exits
the medium at different points, and solve an inverse problem
to reconstruct the 3-dimensional (3D) marker concentration.
This method, which possesses potential application for can-
cerous tumor detection, is raising increasing interest.

There are three common approaches for performing
FDOT acquisitions: continuous wave (CW), frequency do-
main (FD) and time-resolved (TR). CW FDOT is based on
the measurement of the attenuation of a steady state exci-
tation light [1]. FD FDOT is based on the measurement of
the phase and amplitude of the modulated excitation light
[2]. TR FDOT is based on the temporal measurement of
the response to an excitation light pulse [3, 4, 5, 6, 7]. The
CW and FD approaches are inexpensive and easy to develop,
while TR-FDOT is more costly and difficult to implement.

This work has been supported by the Région Rhône-Alpes in the context
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However, the TR approach is potentially able to reconstruct
markers embedded as deep as several centimeters within the
medium [7]. TR is a practical way of maximizing the amount
of information collected from the measurements.

Since the introduction of this modality, researchers have
looked for the best way to extract and compress the extra in-
formation provided by the TR signals. The focus was initially
set on early arriving photons [3]. This approach, however,
suffers from low signal-to-noise ratio and provides poor depth
resolution. A more recent trend has been to exploit some
global features of the time-resolved signals [4, 5, 6]. In par-
ticular, researchers have investigated the use of the Laplace
transform [4] as well as the moments of the TR fluorescence
signals [5, 6]. However, there is still a crucial need to opti-
mize and compress the extra information provided by the TR
signals.

In this paper, we introduce a novel feature extraction pro-
cess and develop a corresponding reconstruction algorithm.
Specifically, the TR signal is described by a sequence of in-
ner products with exponential B-splines [8]. The justification
for this type of representation is twofold. First, fluorescence
is physically related to exponentially decaying signals that
are well represented in terms of exponential splines. Second,
it provides a (non-stationary) multiresolution representation
where the level of detail is controlled via the knot spacing (or
the scale) of the spline [8].

2. THEORY

Physically, FDOT is a three-step process. The light is first
turned on and it propagates from the source to a given flu-
orescence marker within the medium. This excites the fluo-
rophore and induces an emission at a higher wavelength (Step
2). The emitted fluorescence light then eventually propagates

!"#$#%&!&'(''&)$)(&'*+$*,("-++./(++$.0111 0230.(++$



from the marker to the detector (Step 3).

2.1. Time-resolved forward model

Light propagation within biological tissues is strongly dom-
inated by absorption and scattering of light. Classically, the
light propagation in these so-called turbid media is modeled
as a diffusion process. This approximation relies on the as-
sumptions that the scattering probability is much larger than
the absorption. This assumption, although somewhat restric-
tive, holds in most practical FDOT scenarios. Moreover, the
relative simplicity of the diffusion approximation allows for a
significant reduction in the computational costs.

Within the framework of the diffusion approximation, the
photon density φ(r, t) (W.cm−2) at position r and time t can
be expressed by means of the following partial differential
equation [9]:

−∇D(r)∇φ(r, t) +
1
v

∂

∂t
φ(r, t) + µa(r)φ(r, t) = S(r, t),

(1)
where D(r) (cm) is the diffusion constant defined by D =
1/(3µ′

s); µ′
s(r) (cm−1) is the reduced scattering coefficient,

µa(r) (cm−1) is the absorption coefficient, v (cm.ns−1) is the
speed of light in the turbid medium, and S(r, t) (W.cm−3) is
the instantaneous power density of the source.

2.1.1. Fluorescence

In this work, the pulse response of the fluorescent markers is
modeled by a decaying exponential:

f(r, t) = c(r)η exp[−t/τ(r)]/τ(r), (2)

where c(r) (µM) is the local marker concentration at position
r, τ(r) (ns) is the fluorescence lifetime, and η is the quan-
tum yield. In the following, the lifetime τ is assumed to be a
constant. We denote e(t) = η exp(−t/τ)/τ .

2.1.2. FDOT signal

In the following analysis, the spatial dependence of a function
is indicated as a subscript. With this convention, the tempo-
ral measurement performed at the detection point d resulting
from the excitation of the medium at the source point s is de-
noted by ms,d(t).
In [10], we have shown that the signal measured by an acqui-
sition setup can be modeled—to a good approximation—by
the photon density at the detection point. Consequently, a
point marker at position rn, with local concentration cn =
c(rn), leads to the following measurement [11]:

ms,d(t) = cn (φs,rn ∗ e ∗ φrn,d) (t), (3)

where the symbol ∗ refers to the convolution along the time
axis, φs,rn denotes the Green’s function of the light prop-
agation operator P = −∇D(r)∇ + 1

ν
∂
∂t + µa(r) at point

rn, the source term being δ(r − s)δ(t). Similarly, φrn,d is
the Green’s function of P at point d, the source term being
δ(r − rn)δ(t).
Equation (3) is the mathematical description of the three-step
physical process of FDOT. φs,rn is the time course of the
amount of light at position rn due to the pulse excitation at
point s. The convolution (φs,rn ∗ e)(t) represents the time
course of the fluorescence light intensity that is re-emitted at
position rn due to the presence of the fluorescent marker. The
term φs,rn ∗ e ∗ φrn,d represents the amount of light leaving
the medium from the point d after propagation of the fluores-
cence light from the point rn. This quantity is weighted by
the local concentration of the marker to give the actual mea-
surement.
Considering a distribution of the point markers at positions
{rn ∈ Ω, n = 1, 2, 3, ..., N}, the effective measurement is
given by the sum of the individual contributions. Moreover,
considering a distribution of source points si, i ∈ [1, I] and
detector points dj , j ∈ [1, J ], a set of I×J measurement pairs
can be formed and consequently as many equations. This is
written into the form of a matrix equation:

m(t) = W (t)c, (4)

where the measurement vector m(t) ∈ RI×J is such that
m(t) = [m1,1(t) . . . mi,j(t) . . . mI,J(t)]T , and the concen-
tration vector c ∈ RN such that c = [c1, . . . cn, . . . cN ]T .
The weight matrix W (t) ∈ R(I×J)×N that maps the concen-
tration vector to the measurement vector comprises the en-
tries: w(i,j),n(t) = [φsi,rn ∗ e ∗ φrn,dj ](t).

3. MATERIAL AND METHODS

3.1. Transformation of the TR signals

In this work we consider a MRA of the TR signals, along the
time axis. Explicitly, at scale i, we consider a transforma-
tion that compresses any signal s(t) to the set of coefficients
m̂i[k]. We define:

m̂i[k] =
∫

s(t)φk,i(t) dt, (5)

where φk,i(t) = βi(t − k 2iTs), βi being an exponential B-
spline of order 0 [8]. To tune the basis functions with the
physics, we consider an exponential B-spline with an expo-
nential decay corresponding to the fluorescence. Thus, we
define βi(t) = exp(−t/τ)[u(t)−u(t−2iTs)], where u is the
unit step function, and τ the fluorescence lifetime. The time
step Ts is set to 500 ps and the integration is performed over
the range [1, 5] ns. As a result, card (ŝi[k]) = 23−i.
Applying this transformation component-wise on both sides
of (4) leads to the following MRA system:

m̂i = Ŵic, (6)

where m̂i and Ŵi are the concatenation of the m̂i[k]’s and
the Ŵi[k]’s, respectively.

!"%



Fig. 1. Reconstructed concentration in the presence of 3% of gaussian noise. a) numerical phantom; b) reconstruction from
CW signals; reconstruction from exponential B-splines MRA at: c) scale 3, d) scale 2, e) scale 1, and f) scale 0.

3.2. Reconstruction

The inverse problem in FDOT is known to be ill-posed, mean-
ing that a small perturbation in the data can lead to a large
deviation in the reconstruction. To overcome this drawback,
the inverse problem must be solved within the framework of
regularization. Thus, the reconstructed vector c∗ is obtained
by minimizing the Tikhonov cost function instead of the stan-
dard quadratic cost. Thus we have that:

c∗ = arg min
c

||m̂i − Ŵic||2 + α||c||2, (7)

where m̂i and Ŵi are the MRA of m and W at scale i as
defined in (5) and (6); α is the regularization parameter. In
practice, our implementation is based on the singular value
decomposition of Ŵi.

4. NUMERICAL EVALUATION

4.1. Description of the synthetic phantom

We consider the optically homogeneous infinite medium
phantom shown in Fig. 1a). The absorption coefficient µa is
set to 0.04 cm−1 and the reduced scattering coefficients µ′

s to
9 cm−1. These values are in agreement with in vivo values of

Fig. 2. Reconstructed concentrations around site number 2,
along the z-axis (left) and the x-axis (right), for MRA scales
i = {0, 1, 2, 3}.
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breast tissue [12]. The homogeneity of the phantom allows
to employ the analytical solutions of (1) [13]. The marker
we use has a lifetime τ of 0.7 ns corresponding to the widely
employed Alexa 750. The markers are concentrated prefer-
entially around three sites at positions r = [−1,−1, 1.25],
r = [0, 0, 2.75], and r = [1, 1, 4.25]. To simulate the aut-
ofluorescence of the tissue as well as the nonspecificity of the
markers, we also consider a fluorescence background with a
background-to-site ratio of 1:10.
For the purpose of reconstruction, the medium is evenly dis-
cretized, resulting into 810 cubic voxels of size 0.5 × 0.5 ×
0.5 cm3 covering a total volume of 4.5×4.5×5 cm3. The
medium is excited by 13 point-sources and probed by 13
point-detectors. The sources and detectors are evenly ar-
ranged in two grids of side 3 cm placed 5 cm apart. Finally,
the TR synthetic measurement vector m(t) is corrupted by
3% Gaussian noise.

4.2. Results

We present reconstructions of concentration vector in the ge-
ometry described in Section 4.1. In Fig. 1, we display the
reconstructed concentration vectors c∗ for the MRA scales
i = {0, 1, 2, 3}. In Fig. 2, we show the reconstructed vectors
along the x and z-axis around the fluorescence site number 2.
It can be seen on both Fig. 1 and Fig. 2 that the poor quality of
CW reconstruction can be enhanced by considering E-splines
MRA reconstruction. Note that the reconstruction quality gets
better when a finer MRA is considered.

5. CONCLUSION

We have proposed a new reconstruction scheme for TR FDOT
that uses exponential spline basis functions. The proposed
multiresolution E-spline framework is adapted to the repre-
sentation of TR signals and provides a direct control of the
resolution. The first results obtained on simulations show that
this TR approach improves the reconstruction of deeply em-
bedded markers compared with the CW approach. A detailed
comparative study between the proposed TR approach and
the gold-standard TR approach – based on the moments of
the signals – is in progress.
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