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ABSTRACT

We present a novel approach to change detection between two
brain MRI scans (reference and target.) The proposed method
uses a single modality to find subtle changes; and does not re-
quire prior knowledge (learning) of the type of changes to be
sought. The method is based on the computation of a local
kernel from the reference image, which measures the likeness
of a pixel to its surroundings. This kernel is then used as
a feature and compared against analogous features from the
target image. This comparison is made using cosine similar-
ity. The overall algorithm yields a scalar dissimilarity map
(DM), indicating the local statistical likelihood of dissimi-
larity between the reference and target images. DM values
exceeding a threshold then identify meaningful and relevant
changes. The proposed method is robust to various challeng-
ing conditions including unequal signal strength.

Index Terms— change detection, magnetic resonance
imaging (MRI), local regression kernel

1. INTRODUCTION AND OVERVIEW

The automatic analysis of subtle change between images of
the same subject over time is a very important component in
a large number of applications in diverse disciplines. Areas
where such analyses are deployed include computer-aided di-
agnosis (CAD), video surveillance, and remote sensing, to
mention just a few. In particular, change detection in medi-
cal diagnosis may be applicable to a broad range of diseases
including cancers, Multiple Sclerosis, Alzheimer’s and more.
In general, a change detection method consists of three stages:
1) geometric registration of images, 2) intensity adjustments,
and 3) image comparison to identify changes. We refer the
interested reader to [1] and references therein for a good sum-
mary.

The generic problem of interest addressed in this paper
focuses on the third component and can be briefly described
as follows: We are given a set of brain Magnetic Resonance
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Imaging (MRI) scans of the same subject acquired over time,
and we are interested in identifying pixels which are “sig-
nificantly” different between the two MRI scans. Even in
the absence of registration errors, estimating diagnostically
significant changes is still challenging due to such factors
as signal nonuniformity or presence of noise. A variety of
MRI artifacts also introduce a wide range of confounding
factors, making standard change detection methods unreli-
able. In order to deal with these problems, multispectral MRI
scans were employed for the purpose of lesion detection by
many researchers. For example, there are at least five dif-
ferent MRI modalities including T1 weighed, inversion re-
covery (IR), proton-density-weighted (PD), T2-weighted, and
fluid attenuation inversion recovery (FLAIR). For statistical
change detection in multispectral MRI scans, Bosc et al. [2]
used the Generalized Likelihood Ratio Test (GLRT) followed
by nonlinear joint histogram normalization. However, their
approach tends to fail when noise is non-stationary. Patri-
arche et al. [3] also used multispectral MRI scans to detect
progression of brain tumors. Recently, Rousseau et al. [4]
proposed an a contrario approach to detect Multiple Sclero-
sis in multispectral MRI scans. However, in the majority of
clinical situations, only one type of anatomical MRI scan is
collected, since the acquisition of multispectral MRI scans is
more time consuming and costly. Longer scanning times are
further not feasible in many patients due to the severity of
their conditions.

The main objective of this paper is to present an automatic
change detection method given two images from a single MRI
modality (See Fig. 1 for a graphical overview.) Our proposed
method is based on the calculation and use of what we call
local regression kernels which are local features computed
directly from the given pixels in both the reference image and
the target images, as elaborated below. The key idea behind
local regression kernels is to robustly obtain local geomet-
ric structures of images by analyzing the radiometric (pixel
value) differences based on estimated gradients, and use this
structure information to determine the shape and size of a
canonical kernel. The motivation to use these local regres-
sion kernels is the earlier successful work on adaptive ker-
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Fig. 1. System overview

nel regression for image denoising and interpolation [5]. Re-
cently, Seo and Milanfar [6, 7] proposed to use local regres-
sion kernels as descriptors for generic 2-D object detection
and demonstrated a high detection accuracy with challenging
sets of real-world objects.

The local steering kernel is modeled as
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where i € [1,---, P?], P? is the number of pixels in a local
window, A is a global smoothing parameter, and the matrix C;
is a covariance matrix estimated from a collection of spatial
gradient vectors within the local analysis window around a
sampling position x; = [z1, xg] The covariance matrix C;
modifies the shape and size of the local kernel in a way which
robustly encodes the local geometric structures present in the
image.

In what follows, at a position x;, we will essentially be
using (a normalized version of) the function K (x; — x;; C;)
as a function of x; and C; to represent an image’s inherent lo-
cal geometry (See Fig. 2 for example.) It is worth noting that
normalization of this kernel function [6, 7] yields robustness
to illumination, contrast, and color differences.

Very recently, Pecot et al. [8] introduced a change detec-
tion framework based on the so-called “patch-based Markov
models” in image sequence analysis. It is worth mentioning
that their method is to detect pixels with meaningful change
for several frames by first constructing a difference image
while our method directly computes local steering kernels
from the reference image and the target image. The proposed
method has an advantage over their method in that the calcu-
lation of LSK is stable even in the presence of uncertainty in
the data [5] and is not sensitive to relatively large variations in
illumination [6, 7]. To summarize the operation of the over-
all algorithm, given the reference image and the target image,
we first calculate the LSK from both the reference image and
the registered target image at all pixel locations. Comparison
between LSKs computed from two images is carried out us-
ing the cosine similarity measure [9, 10]. This step produces
a “dissimilarity map” showing the likelihood of dissimilarity
between the reference and target images. The final output is
given after a significance test. (See Fig. 1 for a graphical
overview.)
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Fig. 2. Examples of LSK in various regions. Note that LSKs
computed from various regions look alike except for regions
7 and 8 where small lesions exist in the target.

In the next section, we provide further details about the
various steps outlined above. In Section 3, we demonstrate the
performance of the system with some experimental results,
and we conclude this paper in Section 4.

2. TECHNICAL DETAILS

Assume that we are given a target MRI scan 7' and that we
have a reference MRI scan R. The first step in the proposed
algorithm is to calculate the local steering kernel (LSK) mea-
suring the relationship between a center pixel and its neigh-
boring pixels, at each pixel from both R and T'.

To be more specific, the local steering kernel function
K (x; — x;) is calculated and normalized as follows
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where M is the total number of pixels in /. Fig. 2 shows some
examples of LSK in various regions of both the reference and
the target. Note that LSKs computed from various regions in
both reference and target look essentially identical except for
regions 7 and 8 where small lesions exist.

At each pixel x;, with a preselected window size of P x
P, we arrive at an array of P? numbers by column-stacking
(rasterizing) K 7(x; — x;) as k}(I € {R,T}).

The next step in the algorithm is the measurement of a
“distance” between the computed features, kﬁ and kJT. Ear-
lier works such as [9, 10] have shown that correlation based
metrics perform better than the conventional Euclidean and
Mahalanobis distances for classification and learning tasks.
Motivated by the effectiveness of correlation-based similar-
ity measures, we propose to use cosine similarity for change
detection. Cosine similarity is defined as the inner product
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between two normalized vectors as follows:
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where cos §; € [—1,1]. The cosine similarity measure there-
fore focuses only on the angle (phase) information while dis-
carding the scale information. In general, there are two main
types of correlation: Pearson’s correlation coefficient which
is the familiar standard correlation coefficient, and the cosine
similarity (so-called non-Pearson-compliant). Cosine similar-
ity coincides with the Pearson’s correlation when each vector
is centered to have zero-mean. However, Pearson correlation
is less discriminating than the cosine similarity due to the fact
that centered values are less informative than the original val-
ues, and the computation of centered values is sensitive to
zero or small values in the vectors. Since the discriminative
power is critical in the change detection framework, we focus
on the cosine similarity.

When it comes to interpreting the value of “correlation”,
it is noted in [11] that p3 € [0, 1] describes the proportion
of variance in common between the two LSKs as opposed to
p; which indicates a linear relationship between two LSKs
k{;{, ij. As for the final test statistic comprising the values
in the dissimilarity map, we use the proportion of “residual”
variance (1 — p?) to the shared variance p?. More specifically,
the test statistic at each point in the image is computed and
dissimilarity map (DM) is generated at each point as follows:
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From a quantitative point of view, we note that f(p; ) is essen-
tially the inverse of the Lawley-Hotelling trace statistic [12],
which is used as an efficient test statistic for detecting corre-
lation between two data sets.

In order to detect salient and significant changes using the
DM, we need a threshold 7. If we have a basic knowledge of
the underlying distribution of f(p;), then we can make pre-
dictions about how this particular statistic will behave, and
thus it is relatively easy to choose a threshold which will in-
dicate whether the pair of features from the two images are
sufficiently dissimilar. But, in practice, we do not have a very
good way to model the distribution of f(p;). Therefore, in-
stead of assuming a type of underlying distribution, we em-
ploy the idea of nonparametric testing. We compute an em-
pirical PDF from the values of f(p;) across the image and we
set T so as to achieve, for instance, a 99 % confidence level
in deciding whether a given value is in the extreme (right) tail
of the distribution. This approach is based on the assumption
that in the target image, most of pixels are not involved with
significant change, and therefore, the few outliers will result
in values which are in the tail of the distributions of f(p;).

3. EXPERIMENTAL RESULTS

In order to validate the proposed method quantitatively, we
simulated lesions in normal brain MRI slices (sagittal, coro-
nal, and axial views). These simulated lesions were gener-
ated using a 3-D region of interests (ROI) creation tool pro-
vided in MRIcro [13]. Exact sizes and locations of irregu-
lar shapes of simulated lesions were stored and treated as the
ground truth. In order to cover a variety of lesions, we con-
structed a total of 168 (14 ROIs in different sizes x 3 dif-
ferent views x 4 intensity reduction of 0%, 20%,40%, and
60%, respectively) target slices by following the procedure as
in [14]. Besides, we further made the intensity range of tar-
gets (T) containing lesions different from that of the reference
(R). We compute LSK of size 5 x 5 as descriptors from both
R and T'. As a consequence, each pixel in R and T yields
a 25-dimensional local descriptor respectively!. By perform-
ing significance test on the resulting dissimilarity map with
confidence level 7 = 0.99, we detected regions with anoma-
lous and statistically significant changes. Fig. 3 illustrates
three examples of the detected results at the simulated lesions
with 20 % intensity reduction (i.e., degree of lesion trans-
parency). As an overall measure of performance?®, we were
able to achieve sensitivity= 0.877, specificity=0.998, and sim-
ilarity index (SI)=0.879.

Rousseau et al. [4] evaluated their method on simulated
lesion images and reported their SI value around 0.75. Shen et
al. [14] tested their lesion detection method based on segmen-
tation to lesions generated from MRIcro [13] and reported
their SI values on the simulated target slices with 20%, 40%,
and 60% intensity reduction as 0.867, 0.879, and 0.724 re-
spectively. Our method which obtained an average of 0.879
for SI performs comparably with the method in [14] and out-
performs the method in [4] even though [4] used multispectral
MR images?.

4. CONCLUSION

In this paper, we have proposed a novel and relatively sim-
ple, but effective statistical change detection framework to
detect meaningful changes between two MRI images. Our
main contribution consists of a general nonparametric statisti-
cal framework based on local steering kernels, and calculation
of test statistics derived from cosine similarity. The proposed

'Tt is worth mentioning that performance of our change detection system
is not particularly sensitive to the choice of LSK size because the local co-
variance matrix C; plays a role in automatically determining the shape and
size of kernels.
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gions with true lesions (i.e., simulated lesions in this paper). Ag:
represents detected lesions. I refers to the whole image.

3 As pointed out in [4], it is difficult to provide a fair comparison among
automatic change detection algorithms due to the fact that there is no gold
standard and codes of state-of-the art methods are not publicly unavailable.

, Wwhere A, represents the ground truth, which is re-
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framework is general enough as to be extendable to 3-D for
tumor detection in serial MRI scans using analogous 3-D local
steering kernels [15]. Due to its robustness to noise and other
systemic perturbations, we also expect the present framework
to be quite effective in other imaging modalities such as CT,
PET, etc.

(1]

(2]

(3]

(4]

(5]

(6]

5. REFERENCES

R.J.Radke, S. Andra, O. Al-Lofahi, and B. Roysam, “Im-
age change detection algorithms: A systematic survey,” IEEE
Transactions on Image Processing, vol. 14, pp. 294-307,
March 2005.

M. Bosc, F. Heitz, J. Armspach, I. Namer, D. Gounot, and
L. Pumbach, “Automatic change detection in multimodal se-
rial MRI: applicaton to Multiple Sclerosis lesion evolution,”
Neurolmage, vol. 20, pp. 643-656, July 2003.

J. W. Patriarche and B. J. Erickson, “Part 1. automated change
detection and characterization in serial MR studies of brain tu-
mor patients,” Journal of Digital Imaging, vol. 20, pp. 203—
222, September 2007.

F. Rousseau, S. Faisan, F. Heitz, J. Armspach, Y.Chevalier,
F.Blanc, J. Seze, and L. Rumbach, “An a contario approach
for change detection in 3D multimodal images: Application
to Multiple Sclerosis in MR1,” IEEE Engineering in Medicine
and Biology Society (EMBS), pp. 2069-2072, August 2007.

H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for
image processing and reconstruction,” IEEE Transactions on
Image Processing, vol. 16, no. 2, pp. 349-366, February 2007.

H. J. Seo and P. Milanfar, “Using local regression kernels for
statistical object detection,” Proceedings of IEEE International

Output

(7]

(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

Output

Fig. 3. Detected lesion on simulated images (left: coronal view, middle: sagittal view, right: axial view.) In all three cases, we
used the same parameters P = 5, h = 1.0, 7 = 0.99. Note that absolute difference image can not identify lesions at all while
the proposed method detected simulated lesions stably. Note that images are better illustrated in color.

Conference on Image Processing (ICIP), pp. 2380-2383, Oc-
tober 2008.

——, “Training-free, generic object detection using locally
adaptive regression kernels,” Submitted to IEEE Transactions
on Pattern Analysis and Machine Intelligence, October 2008.

T. Pecot and C. Kervrann, “Patch-based markov models for
change detection in image sequence analysis,” The Interna-
tional Workshop on Local and Non-Local Approximation in
Image Processing, August 2008.

Y. Ma, S. Lao, E. Takikawa, and M. Kawade, “Discrimi-
nant analysis in correlation similarity measure space,” Inter-
national Conference on Machine Learning, vol. 227, pp. 577—
584, 2007.

Y. Fu, S. Yan, and T. S. Huang, “Correlation metric for gener-
alized feature extraction,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 30, no. 12, pp. 2229-2235,
2008.

R.J. Rummel, Applied Factor Analysis. Evanston, Ill.: North-
western University Press, 1970.

Macmillan, 1988.

[Online]. Available: http://www.sph.sc.edu/comd/rorden/ mri-
cro.html

M. Tatsuoka, Multivariate Analysis.

S. Shen, A. Szameitat, and A. Sterr, “Detection of infarct le-
sions from single MRI modality using inconsistency between
voxel intensity and spatial location-a 3D automatic approach,”
IEEE Transactions on Information Technology in Biomedicine,
vol. 12, pp. 532-540, 2008.

H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-
resolution without explicit subpixel motion estimation,” Sub-
mitted to IEEE Transactions on Image Processing, 2008.



