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ABSTRACT

The requirements for better resolution in all medical imaging

modalities currently represent a very important and open chal-

lenge. Accurate measurement and visualization of structure

in living tissues is intrinsically limited by the imaging sys-

tem features. Imaging beyond these limits in medical imag-

ing is referred to as super-resolution. We provide first a brief

overview of super-resolution imaging and present a technique

for achieving super-resolution in medical imaging based on

analysis of the imaging system point spread function, and il-

lustrate the methodology in the case of ultrasound imaging.

The technique proposed uses parametric modeling to estimate

B-mode images. The technique behavior is illustrated using

phantom and in vivo images.

Index Terms— AR model, Medical Imaging, Multidi-

mensional, Super-resolution, Ultrasound.

1. INTRODUCTION

The resolution of an imaging system is defined by its ability

to separate two close point sources. The term super-resolution

(SR) may have different meanings depending on the applica-

tion domain or point of view. For instance, as stated by Baker

and Kanade [1], almost all the algorithms dealing with SR

are based on the constraints that an SR image should generate

low resolution input images when appropriately warped and

down-sampled to model the image formation process. Thus

(conversely) SR is the process of combining multiple low res-

olution images to form a higher resolution image. This anal-

ysis is less valid in medical imaging. Medical images are al-

ways the result of interactions between a tissue and a physi-

cal phenomenon such as a wave (in Ultrasound, MRI) or an

ionizing particle (in X-ray/CT, PET or SPECT). Due to high

diagnostic potential and biological models, imaging biologi-

cal micro-structures of sub-micron size has been a important

goal in recent years for many imaging modalities. In non-

invasive medical imaging, the physical phenomenon crosses

intermediate tissues (such as bone, blood, skin, ...) before

the expected interaction occurs. Loss of resolution in medical

images results mainly from two limitations which are respec-

tively intrinsic and extrinsic. Intrinsic resolution limitation

originates from a physical interaction between the tissue and

the physical phenomenon (wave or elementary particle). This

resolution is limited both by the characteristics of this inter-

action, such as attenuation, scattering, etc, and by the char-

acteristics of the sensors such as wavelength, its nature and

arrangement (spatial distance between detectors). Extrinsic

resolution limitation results from perturbation of the image

recordings. Such resolution is limited by the non-spontaneous

and spontaneous rhythms of the tissue or the patient such as

movements, heart or breathing rate. Hence, general purpose

super-resolution techniques are limited to extrinsic resolution

enhancement. These techniques combine sets of low resolu-

tion images to obtain images with higher resolution (see e.g.,

[1], [2], [3] and relevant references therein, and also other pa-

pers in this special session).

Much attention has been paid to devices for the enhance-

ment of intrinsic resolution, and many studies have been per-

formed on the optimization of the imaging devices or sen-

sors or are under consideration (see e.g. [4], [5], [6], [7], [8],

[9], [10]).The problem of extrinsic resolution enhancement

by post-processing of images rather than device-engineering

challenge has recently become the focus of much interest.

Most studies deal with a deconvolution-based approach (see

e.g. [11]). The remainder of this paper will consider intrinsic

resolution enhancement using post-processing techniques. To

get better insight, we consider the case of ultrasound imag-

ing. The objective is overcoming the physical limitations of

the imaging system. One important criterion which facilitates

the understanding of super-resolution is the Rayleigh diffrac-

tion limit [12]. Roughly speaking this limitation for ultra-

sound imaging may be considered as being λ/2 or, since in

medical imaging it is important distinguish lateral resolution

rl from axial resolution ra, these limit resolutions may be ex-

pressed by [8]: rl = λfnumber = λ L
D ; ra = 1

2
c

Bw

where

λ is the average ultrasound wavelength, c is sound velocity,

fnumber = L/D, and D and L are diameter and focal length

of the transducer (sensor), respectively; Bw is the bandwidth

of the transducer. The aim of SR imaging is to provide images

with resolution above these limitations. rl and ra are acces-

sible through the point spread function (PSF) of the imaging

system. Various studies have described the PSF-based resolu-



tion properties of super-resolution [13], [14], [15], [16]. Us-

ing a resolution estimation model, we suggest here a method

to achieve effective super-resolution in recorded ultrasound

images.

2. SUPER-RESOLUTION MODEL

2.1. Super-resolution model

An ultrasound image is a collection of individual radio fre-

quency (RF) signals backscattered from elementary scatters

of the material. One of the most common ultrasound image

display methods is the B-mode. The individual RF signal

envelopes are extracted (filtered and log-compressed) and

displayed in gray levels. We investigate here the theoretical

framework for analysis of PSF, show how to achieve super-

resolution from recorded ultrasound images and provide

results regarding subsequent improvement in the image. For

this analysis, the following theoretical developments based

on mathematical framework introduced in [13], [16] were

adapted to ultrasound imaging. For easier readability, only

the one dimensional case is considered; the two dimensional

case is straightforward [16]. Consider two point objects, sep-

arated by a distance d in the axial direction of the ultrasound

beam, receiving a beam and reflecting ultrasound towards

the emitting transducer. (The methodology is also valid for

lateral resolution analysis). Assume the point spread function

(PSF) of this imaging system is h0, which is assumed to be

causal, to have an absolute maximum, and to tend to zero at

infinity. Also assume that all the parameters of the ultrasound

imaging system (sound velocity, frequency, attenuation, ...)

are fixed. We then deal with the distance d separating the

two-point sources located at z̄0 and z̄0 + d so that the echoes

are h0(z− z̄0) and h0(z− z̄0−d) once received, respectively.

Performing a trivial variable change, and sampling above

Nyquist frequency, the received echo y(z) is :

y(zk) = α1h0(zk + d/2) + α1h0(zk − d/2) + w(zk) (1)

where α1 and α2 denote amplitudes of echoes and are re-

lated to the acoustic properties of the point-source; w(zk) is

an additive zero mean gaussian white noise, with variance

σ2. We assume that d is so small that h0(zk − d/2) and

h0(zk +d/2) mainly overlap. For ultrasound imaging, we as-

sume that d < λ/2, where λ is the average ultrasound wave-

length. Thus if we normalize d by λ/2, we can assume that

0 ≤ d < 1 (super-resolution). This implies that when d = 0
one peak is present in combined PSF, whereas d > 0 will ex-

hibit two peaks. This is equivalent to classical two hypothesis

testing, i.e. H0 : d = 0 and H0 : d > 0. Using second order

Taylor expansion around d ≈ 0, this is equivalent to






H0 : y(zk) = (α1 + α2)h0(zk) + w(zk)

H1 : y(zk) = (α1 + α2)h0(zk) + (α1−α2)
2 d∂h0

∂z

+ (α1+α2)
8 d2 ∂2h0

∂z2 + w(zk)
(2)

Assuming M data are available, and denoting hn(zk) =
∂nh0(z)

∂zn |z=zk
, h0 = [h0(z1), ...h0(zM )]T , n = 0, 1, 2, and

w = [w(z1), ..., w(zM )]T , the hypothesis tested is also :

{

H0 : y = (α1 + α2)h0 + w

H1 : y = (α1 + α2)h0 + (α1−α2)
2 dh1 + (α1+α2)

8 d2h2 + w

(3)

From this, it can be shown that the signal-to-noise ratio (SNR)

is :

SNR =

∣

∣

∣

∣

∣

∣
(α1 + α2)h0 + (α1−α2)

2 dh1 + (α1+α2)
8 d2h2

∣

∣

∣

∣

∣

∣

2

Mσ2

(4)

SNR =
µPFA,PD

M
×

(α1 + α2)
2E0 − α1α2d

2E1 + (α1+α2

8 )2d4E2

E1(α1−α2)2

4 d2 + (E2 −
E2

1

E0

) (α1+α2)2

64 d4
(5)

Ei = fs

∫ +∞

−∞
|hi(u)|2du, where fs is the sampling frequency

and µPFA,PD a parameter depending on the probability of

false alarm (PFA) and the probability of detection (PD) of

peaks [17]. (5) makes it possible to circumvent the knowledge

of σ2. In short, this shows an explicit link between SNR and

resolution under the Rayleigh limit. The question is now how

to achieve this higher resolution.

3. RESOLUTION ENHANCEMENT

Here we consider a two dimensional echo signal y. We

assume that y is modeled by a second order stationary two-

dimensional AR process. A second order stationary two-

dimensional AR process (2D-AR) is defined as follows :

y(n1, n2) =
∑

(k1,k2)ǫI

a(k1, k2)y(n1 − k1, n2 − k2) + w(n1, n2)

where I defines the different quarter planes; w(n1, n2) is a

complex-number gaussian field of random possibly colored

noise and the parameters a(k1, k2) are complex numbers and

provide a stable system. We used complex numbers for two

reasons : first the techniques developed are thus general,

and second, when dealing with ultrasound, particularly for

B-mode representation, it is necessary to extract envelopes of

RF lines; this involves complex number signals. The param-

eter a1(k1, k2) and model (p1, p2) orders may be estimated

simultaneously using the relevant algorithm [18]. Once es-

timated, the well known power spectrum density (PSD) is

given in the first quarter plane (where the parameters are

denoted a1(k1, k2)) by :

Par1(f1, f2) =
σ2

|
∑p1

k1=0

∑p2

k2=0 a1(k1, k2)e−j2π(f1k1 + f2k2)|2
,

(6)



and in the fourth quarter plane (where the parameters are de-

noted a4(k1, k2)) by :

Par4(f1, f2) =
σ2

|
∑p1

k1=0

∑0
k2=−p2

a4(k1, k2)e−j2π(f1k1 + f2k2)|2
.

(7)

Finally, to account for the causality and due to the equivalence

between planes (see e.g. [19]), the overall PSD is given by :

Par1,4(f1, f2) =
σ2

1
2 [|A1(f1, f2)|2 + |A4(f1, f2)|2]

, (8)

where |A1(f1, f2)|
2 and |A4(f1, f2)|

2 are the denominators

of eqs. (6) and (7). Thus, provided the orders (and also the

parameters) are correctly estimated, the resolution of Par1,4

is theoretically unlimited. These equations tell us that to im-

prove frequency resolution it is useful to perform parametric

modeling in the direct (time or space) domain (eq.(6)). This

methodology can be applied to ultrasound imaging. To en-

hance image resolution it is useful to work on the (space do-

main) envelope of the image given by the RF signals. The

envelope signals are provided by the magnitude of the Hilbert

transform of the signals. The methodology proposed consists

of performing parametric modeling on the Fourier transform

(in order to be in the Fourier domain) of the Hilbert transform

of the RF data. We then use eq.(8) which provides a high

resolution envelope. The main advantage of this for the in-

trinsic resolution enhancement approach is that it applies to

PSF without its explicit use or estimation. Here are the main

steps of the technique.

1. Compute the Hilbert transform (of each line) of the im-

age

2. Compute the inverse Fourier transform of a given image

3. Perform AR modeling using the above developments

4. Compute PSD to obtain well resolved envelopes.

For illustrative purposes, we consider :

y(xm, zn) = α1h00(xm + dx, zn + dz)

+α1h00(xm − dx, zn − dz) + w(xm, zn)(9)

We assume that 0 ≤ dz < 1 and 0 ≤ dx < 1. h00

is the imaging system finite support symmetric PSF and

w(xm, zn) is an additive zero mean gaussian white (or pos-

sibly colored) noise with variance σ2. Let h00(z, x) =
sinc(z)sinc(x)e(2πjc(x+y)/λ). For readability, we only show

the axial resolution. In fig.1, we show the estimated resolu-

tion (dash with ’o’) using (5). For a fixed SNR, using AR

modeling we estimated the optimal order and relevant achiev-

able resolution. As can be seen, the achievable resolution was

greater than that provided by (5). The following figures show

the results using a thread embedded in a gel and some in vivo
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Fig. 1.

For a fixed SNR, AR modeling was used to estimate the opti-

mal order and relevant achievable resolution. As can be seen,

the achievable resolution was greater than that provided by

(5).

materials. The images shown in fig.2 are transverse images

of a single thread embedded in a gel. The arbitrary expected

theoretical image is shown at the top; the lower left image is

the original 20 MHz ultrasound image, and the lower right

image shows the result after using the proposed method. As

can be seen, the processed image is closer to the expected

theoretical image. The images shown in fig.3 compare 20

Fig. 2.

Comparison between expected theoretical image (top), origi-

nal 20 MHz ultrasound image (lower left) and processed im-

age (lower right) obtained from the original ultrasound im-

age.

MHz ultrasound images of a mouse kidney. The original

ultrasound image is shown on the left, and the right image



shows the result after using the proposed method. As can be

seen, more detail is provided by the processed image.

Fig. 3.

Comparison between original 20 MHz ultrasound image of

a mouse kidney (left) and processed image (right) obtained

from the original ultrasound image.

4. CONCLUSION AND GENERAL REMARKS

After a brief overview of SR in medical imaging, we have

summarized super-resolution theory and have shown how

to enhance resolution from recorded ultrasound images and

provided results regarding subsequent improvement in the

image. This algorithm was based on correct estimation of

model order and parameters. The results demonstrate that

such parametric modeling, combined with the proposed ul-

trasound imaging technique, is an interesting way to enhance

ultrasound image resolution. Further intensive investigations

are in progress to evaluate the theoretical and quantitative

performance of this technique.
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