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ABSTRACT

Compressive sensing is the reconstruction of sparse images

or signals from very few samples, by means of solving a

tractable optimization problem. In the context of MRI, this

can allow reconstruction from many fewer k-space samples,

thereby reducing scanning time. Previous work has shown

that nonconvex optimization reduces still further the num-

ber of samples required for reconstruction, while still being

tractable. In this work, we extend recent Fourier-based algo-

rithms for convex optimization to the nonconvex setting, and

obtain methods that combine the reconstruction abilities of

previous nonconvex approaches with the computational speed

of state-of-the-art convex methods.

Index Terms— Magnetic resonance imaging, image re-

construction, compressive sensing, nonconvex optimization.

1. INTRODUCTION

1.1. Compressive Sensing and MRI

Results of Candès et al. [1] and Donoho [2] demonstrated that

sparse images can be reconstructed from fewer linear mea-

surements than previously thought possible, in what is now

known as compressive sensing (among other related terms).

The results take advantage of the sparsity inherent in real-

world images: the ubiquity of image compression points to

the existence of transforms converting a digital image into one

having relatively few values significantly different from zero.

Also, the success of total-variation regularization for image

restoration indicates that most images can be well approxi-

mated by those having a sparse gradient.

The approach has been to solve the following convex op-

timization problem:

min
u

‖Ψu‖1, subject to Φu = b. (1)

Here, b consists of the samples Φx where x is an image in 2-

or 3-D, Φ is the measurement or sampling operator, and Ψ is

a sparsifying operator, such as a wavelet transform or discrete

gradient. Then, provided Φ and Ψ are sufficiently incoherent
(roughly that rows of Φ can’t be sparsely expressed in terms
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of columns of Ψ, and vice versa; see [3]), the solution to (1)

will be exactly x, even when the linear system is severely un-

derdetermined. When the measurements are noisy, it is best to

relax the equality constraint and solve the following instead:

min
u

‖Ψu‖1 + (μ/2)‖Φu − b‖2
2, (2)

with μ a regularization parameter whose choice is dependent

on the noise level.

The application of compressive sensing to MRI recon-

struction was implicit in [1], which demonstrated perfect re-

construction of the Shepp-Logan phantom from Fourier-space

samples along 22 radial lines, amounting to 9% of k-space.

Explicit application was undertaken by Lustig et al. [4]. Both

phantoms and anatomical images were reconstructed well with

as little as 20% sampling, using patterns such as spirals and

randomly-positioned lines. (The increase over the sampling

of [1] is typical for real images, which are less sparse than

synthetic phantoms.) They obtained improved results by hav-

ing both a wavelet transform and a discrete gradient in the

objective.

1.2. Nonconvex Compressive Sensing

Numerical results in [5] showed that one can reduce the sam-

pling of Fourier space needed for reconstruction by replacing

the �1 norm in (1) with the �p quasi-norm, where 0 < p < 1:

min
u

‖Ψu‖p
p, subject to Φu = b. (3)

This gives a nonconvex optimization problem, but one that

in practice appears to be solvable using simple algorithms

[5, 6]. Theoretical work [7, 8] has justified these observations,

with [8] also showing that the nonconvex approach increases

robustness to noise and image nonsparsity. An iteratively-

reweighted least-squares (IRLS) approach to �p minimization

was previously taken by Rao and Kreutz-Delgado [9], but

with unimpressive results due to getting trapped in local min-

ima. With both gradient descent [5] and IRLS [6], the key to

avoiding local minima is the successive regularization of the

�p objective, in a manner reminiscent of the graduated non-

convexity approach of Blake and Zisserman [10]. In recover-

ing sparse signals perfectly, these algorithms are able to find

the global minimum of the �0 analog of (1), though it has yet

to be proven that the global minimum of (3) itself is obtained.
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In the MRI context, for the same Shepp-Logan phantom

synthetic example of [1] it was shown in [5] that the num-

ber of radial lines could be reduced from 22 to 10 (or 3.8%

of k-space). Trzasko and Manduca [11] reproduced this re-

sult with a faster algorithm, while also considering real MRI

data examples. Their approach uses an objective function that

approaches the �0 norm asymptotically, which creates a grad-

uated nonconvexity that appears to allow global convergence.

They obtain reconstructions with fewer samples than in [4],

and show that reconstruction quality is improved over �1 min-

imization. They obtain reconstructions of 256 × 256 images

in 1–3 minutes in MATLAB on a 3 GHz desktop computer.

New algorithms for MRI reconstruction via �1 minimiza-

tion that are much faster than their predecessors have been de-

veloped by Ma et al. [12] and Goldstein and Osher [13]. They

both are able to replace iterative linear solvers with Fourier-

domain computations, with substantial time savings. In this

work we generalize these approaches to the nonconvex set-

ting of �p minimization with p < 1. As before we find that

this reduces the number of k-space samples needed for re-

construction of a given quality. The resulting algorithms are

much faster than any existing algorithms for nonconvex com-

pressive sensing. The computation time is dominated by a few

FFT computations per iteration, resulting in desirable scaling

to large images that will make 3-D reconstructions much more

feasible than before.

2. ALGORITHM

Now we present our algorithm approach, beginning with a

generalization of an operator-splitting algorithm of Ma et al.

[12], which is equivalent to the case of p = 1 in what fol-

lows. Our derivation generalizes that of the related algorithm

of Yang et al. [14]. We present the 2-D version, with extension

to 3-D being straightforward. For the time being fix β > 0
and any real p, and define a regularized �p objective by

ϕ(t) =
{

γ|t|2 if |t| ≤ α
|t|p/p − δ if |t| > α.

(4)

Here t can be a scalar or 2-D vector (in which case |t| is the

length of t), the parameters γ and δ are chosen to make ϕ a

C1 function, and α will be chosen shortly. For convenience

we adopt the unusual convention that when p = 0, |t|p/p will

mean log |t|.
Next, we show that there is a function ψ satisfying

ϕ(t) = min
s

{ψ(s) + (β/2)‖s − t‖2
2}. (5)

Yang et al. [14] exploit convex duality and calculate for p = 1
that ψ(s) = |s| (in our notation). In our case, φ is not convex,

but by taking α = β1/(p−2) (or larger), the auxiliary function

f(t) = |t|2/2 − (1/β)ϕ(t) is convex. Letting g = f∗ be the

convex conjugate (or Legendre-Fenchel transform) of f , the

convexity and continuity of f ensures that f = g∗ = f∗∗ as

well. Simple manipulations then show that (5) is satisfied by

ψ(s) = β(g(s)−|s|2/2). Moreover, the minimizer of (5) will

be given by s∗ = ∇f(t) [15, p. 476], which can be shown to

be given by what we call the p-shrinkage operator Sp
α:

Sp
α(t) = max{|t| − α|t|p−1, 0}t/|t|. (6)

This generalizes the shrinkage operator used in several com-

pressive sensing algorithms as well as soft wavelet threshold-

ing. It will not be necessary to compute ψ explicitly. This can

be done for special values of p such as 0 and 1/2, which can

then be used to derive stopping conditions from optimality

conditions as in [14]. We will pursue this in future work.

We now incorporate the above into our algorithm. As in

[4] we use an objective with both a discrete gradient Du and

an orthogonal wavelet transform Ψu:

min
u

∑
i

(
ϕ((Du)i) + λϕ((Ψu)i)

)
+ (μ/2)‖Φu − b‖2

2. (7)

We find it sufficient to use λ = 1 (or 0 for gradient-sparse

images). Now we apply the splitting and obtain

min
u,v,w

∑
i

(
ψ(vi) + λψ(wi)

)
+ (βD/2)‖v − Du‖2

2

+ (βW /2)‖w − Ψu‖2
2 + (μ/2)‖Φu − b‖2

2, (8)

where i ranges over all pixels of the image. Note that each vi

is vector-valued while the ui and wi are scalars. For fixed βD,

βW , and μ, we solve this iteratively by solving for each of u,

v, and w in turn while holding the other two fixed. The benefit

of the splitting approach is that each of the three subproblems

is simple and computationally fast to solve. The v and w sub-

problems are both separable, involving the p-shrinkage oper-

ator (6) applied to each pixel separately, making the computa-

tion vectorized and parallelizable. The solution to the u sub-

problem can be computed directly using FFTs and an FWT,

avoiding the need for an expensive linear solver.

By letting βD, βW → ∞, v is forced to approach Du and

w to approach Ψu, making the solution to (8) approach that of

(7). Ma et al. use a continuation approach, starting with small

β values and then increasing them geometrically, using the

solution at each stage to initialize the next stage. Instead, we

adopt the Bregman iteration approach of Goldstein and Osher

[13]. Bregman iterations were first used in image restoration

[16]; the basic approach is that one can enforce a data con-

straint more and more tightly by adding the residual back to

the data at each iteration. In image denoising, this amounts to

adding what is ostensibly the “noise” back to the noisy image,

a counterintuitive approach that is nonetheless effective and

theoretically justified. This approach was applied by Gold-

stein and Osher to the above in the case of p = 1, and we

find for p < 1 that it gives better performance than continua-

tion. The resulting algorithm is as follows. Let F denote the

2-D discrete Fourier transform, and K a projection operator

onto the k-space locations being sampled, so that Φ = KF .
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Provided we use periodic boundary conditions, we can regard

discrete derivatives as circular convolution with two-element

kernels, so that there is d such that Du = F−1dFu. We also

need Bregman iterates, vector-valued (at each pixel) bD and

scalar-valued bW .

Input: k-space data b, k-space locations projection K,

parameters μ, λ, βD, βW

Precompute: Fourier-domain denominator

G = μK + βD|d|2 + βW

Initialize: u0 = F−1b, v0 = b0
D = 0, w0 = b0

W = 0,

b0 = b
for number of Bregman iterations do

for number of inner iterations do
un+1 = F−1

([
μbm + F(

βDDT (vn − bn
D) +

βW WT (wn − bn
W )

)]
/G

)
vn+1 = Sp

1/βD
(Dun+1 + bn

D)
wn+1 = Sp

1/βW
(Ψun+1 + bn

W )
bn+1
D = bn

D + Dun+1 − vn+1

bn+1
W = bn

W + Ψun+1 − wn+1

end
bm+1 = bm + b − KFun+1

end
Output: Reconstructed image u

Algorithm 1: Fast nonconvex MRI reconstruction

Note that the variables are not reinitialized at the close of each

inner loop, so that n would not be reset. We use manually de-

termined numbers of iterations, deferring more sophisticated

stopping criteria to later work.

We obtain a second algorithm by replacing the p-shrink

operator with a weighted 1-shrink operator Sci
α (t) = max{|t|−

αci, 0}t/|t|. The approach is to compute the weights as ci =
|(Du)i| or |(Wu)i|, but only updated once each inner loop

has completed. This decreases the iteration time slightly, while

slightly increasing the number of iterations needed; which al-

gorithm performs better depends on the particular test.

3. EXPERIMENTS

All experiments were done in MATLAB on a 1.2 GHz laptop

with 3 GB of memory. We begin with the 256 × 256 Shepp-

Logan phantom. Because the phantom has a very sparse gra-

dient, we do not use the wavelet regularization, and let λ =
βW = 0. We set μ = 105 and βD = 1. An early coding mis-

take led to the accidental use of p = −1/2, which allowed the

phantom to be recovered exactly from 9 radial lines of sam-

ples, or 3.5% of k-space. This is fewer than the previous best

of 10 radial lines, first done in [5]. Reconstruction was unsuc-

cessful with nonnegative p. While using p < 1 makes sense

from the perspective of trying to approximate the �0 norm, we

do not understand why p < 0 should improve performance,

but after this discovery we consistently found this in all of our

tests. (Rao and Kreutz-Delgado [9] considered p < 0, with

no benefit.) Using 40 inner iterations, after 32 outer (Breg-

p = 1 p = 1/2 p = 0 p = −1/2
phantom 6.8 dB 50.5 dB 50.3 dB 50.0 dB

uterus 13.0 dB 13.6 dB 13.8 dB 13.9 dB

phantom 11.5 s 17.5 s 13.0 s 13.0 s

uterus 346 s 465 s 438 s 469 s

Table 1. Reconstruction SNR and CPU time for the 256×256
Shepp-Logan phantom (10 radial lines, 3.8% sampling) and

th 1024× 1024 uterus image (random phase, 15% sampling).

The uterus SNRs are misleadingly low due to the noise in the

original image and the denoising effect of the regularization.

(a) Shepp-Logan (b) 9 radial lines (c) 10 radial lines

Fig. 1. Shepp-Logan phantom and radial sampling. Recon-

structions are visually identical to the original, so not shown.

man) iterations, the reconstruction quality was 51.0 dB, tak-

ing 66.5 s. The reconstruction reaches 200 dB after 217 outer

iterations and 647 s, at which point the worst pixel error was

6.58 × 10−10.

Next we consider 10 radial lines (3.8% sampling), the pre-

vious benchmark. In this case we get better performance from

the reweighted version of the algorithm. For p < 1, recon-

structions to 50 dB take as little as 13.0 s; more details com-

paring different values of p are in Table 1. This is about 10

times faster than reported in [11], with better scaling to larger

images expected. Reconstruction fails utterly with p = 1.

We conclude with simulated k-space samples of the noisy

1024× 1024 image in Figure 2, from [17]. We use Gaussian-

density random phase encoding (cf. [4]) with standard devi-

ation 100 columns, and 15% sampling. We use Algorithm 1

with 40 inner iterations and 5 outer iterations. We set μ =
10, λ = 1, βD = 1, and βW = 10. Results with p ∈
{1, 1/2, 0,−1/2} are in Table 1. In Figure 2 we display the

poorest and best results, namely p = 1 and p = −1/2. In the

p = 1 image we see more pronounced aliasing effects. Run-

ning times of 6–8 minutes roughly fit the N log N scaling to

be expected, though direct comparison with the Shepp-Logan

phantom and radial sampling is inappropriate.

4. CONCLUSIONS

We presented an algorithm that can reconstruct MR images

from few k-space samples in much less time than previously

possible. This makes use of previous operator splitting meth-

ods and the Bregman iteration method, as well as a novel p-
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(a) noisy image (b) k-space samples

(c) p = 1 (d) p = −1/2

Fig. 2. Synthetic k-space samples are generated for a noisy

image, using Gaussian random phase encoding. Reconstruc-

tion with p = 1 shows greater aliasing than with p = −1/2.

shrinkage operator. Further investigation is needed into the

effect of sampling patterns and sparsifying transforms. The

development of sparser representations, perhaps customized

to each class of medical images, will lead to better reconstruc-

tion fidelity from very few k-space measurements. It will also

widen the gap between convex and nonconvex compressive

sensing, as the very sparse phantom examples suggest.
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