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ABSTRACT

We propose a novel denoising algorithm to reduce the Poisson noise
that is typically dominant in fluorescence microscopy data. To
process large datasets at a low computational cost, we use the unnor-
malized Haar wavelet transform. Thanks to some of its appealing
properties, independent unbiased MSE estimates can be derived for
each subband. Based on these Poisson unbiased MSE estimates, we
then optimize linearly parametrized interscale thresholding. Corre-
lations between adjacent images of the multidimensional data are
accounted for through a sliding window approach. Experiments on
simulated and real data show that the proposed solution is qualita-
tively similar to a state-of-the-art multiscale method, while being
orders of magnitude faster.

Index Terms— Poisson noise, Fluorescence, Haar Wavelet,
MSE estimation

1. INTRODUCTION

Fluorescence microscopy has gained an increasing interest in the
last few decades thanks to its ability to identify tagged molecules
in a given specimen. One of its main physical limitation stems from
the random nature of photon emission and detection [1]. Especially
under low illumination conditions (short time exposure or photo-
toxicity constraints), these random variations are well described by
a Poisson process. Denoising then becomes an indispensable step
prior to the visualization and analysis of fluorescence microscopy
data. The multiresolution techniques are particularly well suited for
such denoising tasks because they can yield a sparse representation
of the data.

Estimating the intensity of a Poisson process is at the core of
many works in statistics and, quite recently, in signal processing too.
There are globally two main strategies to deal with Poisson statistics.
The first consists in “gaussianizing” the Poisson process by apply-
ing a variance-stabilizing transform (VST), such as the Anscombe
[2] or Haar-Fisz [3] transforms. Then, any denoiser designed for
additive Gaussian white noise (AGWN) can be used [4, 5]. How-
ever, these standard VST-based method are usually not very efficient
for estimating low intensities. The second strategy is the direct han-
dling of Poisson statistics, often in a Bayesian framework [6, 7, 8].
While such approaches are robust, they require more complex esti-
mators than in the AGWN case, due to the signal-dependent aspect
of the Poisson noise. Note that an hybrid approach combining VST,
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hypothesis testing and sparsity-driven reconstruction with the latest
multiresolution transforms has been recently proposed [9].

In this paper, we aim at devising a fast algorithm to efficiently
denoise multidimensional fluorescence microscopy data. We thus
propose to use the unnormalized Haar wavelet transform to process
large datasets at a light computational load. This orthogonal trans-
form has the appealing property of preserving Poisson statistics in its
lowpass channel. In a non-Bayesian framework, it is then possible
to derive an unbiased estimator of the mean-squared error (MSE) in
the wavelet domain. Based on this Poisson unbiased MSE estimate,
we optimize a subband-dependent thresholding function. The use
of a simple non-redundant transform requires the development of
a more sophisticated thresholding than the standard soft- or hard-
threshold. In particular, we use a linear expansion of thresholds
(LET) [10] which incorporates the interscale dependencies. For a
given highpass subband, interscale predictors are extracted from the
corresponding lowpass subband. The latter is also used to locally
adapt the thresholds to the signal-dependent noise variance. Finally,
to account for the strong correlations between adjacents frames (or
slices) of the multidimensional data, we opt for a sliding-window ap-
proach (i.e. neighboring frames as predictors of the current frame),
instead of time- and memory-consuming 3D transforms.

Thanks to the LET construction and the quadratic form of
the Poisson unbiased MSE estimate, a multidimensional interscale
thresholding involving several parameters can be quickly optimized
through the resolution of a linear system of equations.

2. METHOD

2.1. Context

We denote a sequence x of C N -pixel images as a C × N matrix
whose columns xn are the values of each pixel across the whole
sequence, i.e.

x = [x1 x2 . . .xN ], where xn = [xn,1 xn,2 . . . xn,C ]T

The pixels yn,c of the observed noisy sequence y are assumed to
follow independent Poisson laws of underlying intensities xn,c, i.e.
(when dropping the indices n, c)

y ∼ P(x) (1)

Our aim is then to find the best—in the minimum mean-squared
error (MSE) sense— estimate x̂ of x, given the noisy observation y
only, i.e. we want to minimize:

MSE =
1

CN
Tr (x̂ − x)(x̂ − x)T (2)
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2.2. Haar-Domain Unbiased MSE Estimate

In this work, we propose to denoise the data in the unnormalized
Haar wavelet-domain. At each decomposition stage j = 1 . . . J ,
the scaling coefficients of the noise-free (resp. noisy) sequence are
denoted by σj (resp. sj), while the associated wavelet coefficients
are denoted by δj (resp. dj). The filterbank implementation of the
unnormalized Haar wavelet transform is given in Fig. 1.
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Fig. 1. One decomposition stage of the unnormalized Haar wavelet
filterbank: H(z) = 1 + z and G(z) = 1 − z are respectively the
scaling and wavelet filters. As initialization, s0 = y.

The unnormalized Haar wavelet transform has two main advan-
tages over more sophisticated wavelets and redundant transforms:

1. The scaling coefficients of an input vector of independent
Poisson random variables are also independent Poisson ran-
dom variables, i.e. (when dropping the indices n, c and the
superscript j)

s ∼ P(σ)

2. It is an orthogonal transform. Therefore, the MSEs inside
each subband can be minimized independently, while ensur-
ing the minimization of the global MSE.

While simple thresholding rules (such as hard- or soft-threshold)
are already efficient when applied in highly redundant representa-
tions, more sophisticated denoising functions must be considered in
the unnormalized Haar wavelet domain. We thus propose to con-
struct an estimate δ̂

j
of the noise-free wavelet coefficients δj , that

takes into account both the corresponding noisy wavelet coefficients
dj and the scaling coefficients at the same scale sj :

δ̂
j

= θj(dj , sj) (3)

Since the noise-free wavelet coefficients δj are not accessible,
we cannot minimize the actual subband MSE defined by:

MSEj =
1

CNj
Tr (θj(dj , sj) − δj)(θj(dj , sj) − δj)T

where Nj is the number of multidimensional pixels in the subband
at scale j.

To overcome this difficulty, we devise a statistical unbiased es-
timator of the actual subband MSE that only involves the observed
noisy data.

Theorem 1. Let θ(d, s) = θj(dj , sj) be an estimate of the noise-
free wavelet coefficients δ = δj and let ec,n denote a C ×N matrix
filled with zeros, except at the position (c, n) which is set to one.
Define θ+(d, s) and θ−(d, s) by

θ+(d, s) = [θc,n(d + ec,n, s − ec,n)]1≤c≤C,1≤n≤Nj
,

θ−(d, s) = [θc,n(d − ec,n, s − ec,n)]1≤c≤C,1≤n≤Nj
.

(4)

Then the random variable

εj =
1

CNj
Tr θ(d, s)θ(d, s)T + ddT − 1sT

−Tr d θ−(d, s) + θ+(d, s)
T (5)

−Tr s θ−(d, s) − θ+(d, s)
T

is an unbiased estimate of the MSE for the subband under consider-
ation, i.e., E {εj} = E {MSEj}.

Proof. The proof of Theorem 1 is mainly based on relation (5.1) in
[11] .

The accuracy of the proposed Poisson unbiased MSE estimate
improves with the data size. Therefore, (5) is close to the actual
MSE in fluorescence microscopy, due to the high number of acquired
pixels.

2.3. Linear Expansion of Thresholds for Fast Denoising

To take advantage of the quadratic form of the unbiased MSE es-
timate (5), we built our wavelet estimator as a linear expansion of
thresholds [10], i.e.

θ(d, s) =
K

k=1

aT
k θk(d, s)

= [aT
1 ,aT

2 , . . . , aT
K ]

AT

θ1(d, s)
θ2(d, s)

...
θK(d, s)

(6)

Thanks to this linear parameterization, the optimal set of KC ×
C parameters A (i.e. the minimizer of (5)) is the solution of a linear
system of equations:

Aopt = M−1B (7)
where

M = [θk(d, s)θl(d, s)T]1≤k,l≤K

B = 1
2 [d θ−

k (d, s) + θ+
k (d, s)

T
]1≤k≤K

+ 1
2 [s θ−

k (d, s) − θ+
k (d, s)

T
]1≤k≤K

(8)

2.4. Multidimensional Interscale Thresholding for Poisson
Noise

In the Haar wavelet transform, there is no group delay between the
lowpass H(z) and highpass G(z) analysis filters. Therefore, an in-
terscale predictor d̃n of dn can be easily constructed from the same
scale lowpass subband s, as d̃n = sn−1 − sn+1. By construction,
the sign of d̃n turns out to be consistent with those of the correspond-
ing wavelet coefficient dn. Therefore, d̃n can be directly integrated
in the linear expansion of thresholds.

Grouping together wavelet coefficients of similar magnitudes
can also bring some improvements. This grouping can be refined
by taking into account the magnitude of d̃n; in practice, to increase
the robustness toward noise, it is more efficient to use the magnitude
of a smoothed version1 pn of the interscale predictor d̃n.

1This smoothed version is obtained by applying a normalized Gaussian
kernel on the absolute value of d̃.
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Similarly to the multiframe denoising of additive Gaussian
white noise [5], we thus propose to use a multidimensional inter-
scale thresholding of the following form:

θn(d, s) = γ(pT
npn)γ(dT

ndn)

small predictors and small coefficients

aT
1 dn +

γ(pT
npn)γ(dT

ndn)

large predictors and small coefficients

aT
2 dn +

γ(pT
npn)γ(dT

ndn)

small predictors and large coefficients

aT
3 dn +

γ(pT
npn)γ(dT

ndn)

large predictors and large coefficients

aT
4 dn +

γ(pT
npn)aT

5 d̃n + γ(pT
npn)aT

6 d̃n

sign consistency enhancement

(9)

where γ(x) = exp − |x|
2T2 and γ(x) = 1 − γ(x) are the two

complementary grouping functions.
Contrary to the Gaussian case where the noise variance is con-

stant, the threshold T must reflect the non-stationarity of the Poisson
noise. A good estimate of the local noise variance of the wavelet co-
efficients dn is given by the magnitude of the corresponding scaling
coefficient sn. In our experiments, we thus found that T 2 = 6|1Tsn|
gave the lowest MSE.

2.5. Algorithm

In practice, the data usually follow a scaled and shifted Poisson law,
due to the overall gain α and offset µ of the photodetectors, i.e.
y ∼ α P(x)+µ. These two parameters must be estimated from the
noisy samples to properly rescale the data according to the Poisson
model (1). For this propose, we use the procedure described in [5].

To have a fast algorithm at a low computational cost, we use
a sliding window approach, which allows the parallel denoising of
each image of the sequence. In particular, only C′(odd) ≤ C images
are used to denoise the central c = (C′ +1)/2 image. Inside a given
window, the parameters ak of the thresholding function (9) are thus
optimized for the central image only. An overview of the whole
algorithm is depicted in Fig. 2.

3. EXPERIMENTS

3.1. Validation on Simulated Data

To evaluate the performance of the proposed algorithm, we simu-
lated a noisy sequence of size 512 × 512 × 10 (part of it is shown
in Fig. 2), with a mean intensity of 5, leading to an input signal-to-
noise ratio (SNR) of 10.66 dB. The gain was set to α = 1 and the
offset to µ = 0. The estimated parameters were α = 1.01 and
µ = 0.11. Using these estimated parameters, we obtained an out-
put SNR of 23.08 dB in 7.5s using C = 3 adjacent frames and an
output SNR of 23.54 dB in 11.7s using C = 5 adjacent frames. We
got an output SNR of 22.74 dB in 25.8s with the VST-based SURE-
LET algorithm described in [5], and an output SNR of 19.85 dB in
7.5s with a 3D (5 × 5 × 3) median filter. We also applied the recent
Platelet algorithm 2 [8] separately on each frame of the sequence:
we obtained an output SNR of 22.67 dB in about 8hrs30min using

2Matlab implementation available at:
http://people.ee.duke.edu/∼willett/Research/platelets.html

Sliding-Window Approach
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Fig. 2. Overview of the proposed denoising algorithm.

25 cyclic shifts. The computation time thus becomes a crucial point
when dealing with large datasets, making the use of redundant trans-
formations discouraging.

3.2. Results on Real Data

We acquired a 1024 × 1024 × 64 stack of fluorescence images at
the BioImaging and Optics platform (BIOP) at EPFL. We used a
confocal microscope equipped with a 63X PL-APO objective. The
X-Y pixel size was set to 0.09 µm × 0.09 µm and the Z-step was
0.37µm. In addition to fibroblast cells labeled with a DiO dye
(which is predominantly retained by the cell membranes), the sam-
ple contained 100-nm fluorescent microbeads acting as point sources
(see Fig. 3(A)). In Fig. 3, we display the denoising results of the
standard 3D median filter (B), the recent Platelets approach (C) and
the proposed algorithm (D). Observe that our solution compares fa-
vorably with the state-of-the-art Platelets technique, while being or-
ders of magnitude faster.

4. CONCLUSION

We have presented a fast and efficient algorithm to reduce Poisson
noise in multidimensional fluorescence microscopy. In the unnor-
malized Haar wavelet domain, we have devised a prior-free unbiased
estimate of the MSE on which we rely to optimize a linearly parame-
trized interscale thresholding. The strong correlations between ad-
jacent images of the sequence have been incorporated through a
sliding-window approach. Experiments on simulated and real data
have shown that the proposed method is competitive with a state-
of-the-art algorithm, while having a much lower computational cost.
An ImageJ3 plugin of the proposed algorithm will be available soon.

3Free software available at: http://rsb.info.nih.gov/ij/
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Fig. 3. Part of a particular 1024×1024 slice of the 3D fluorescence stack. (A) Raw slice. (B) 7×7×3 Median filter: 8.4s. (C) 25 cycle-spins
of Platelets: 42min. (D) The proposed algorithm using C = 3 adjacent slices: 3.5s.
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