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Abstract
In this paper, we investigate the performance of time-of-flight (TOF) PET in improving lesion
detectability. We present a theoretical approach to compare lesion detectability of TOF versus non-
TOF systems. Computer simulations are performed to validate the theoretical predictions. A TOF
PET tomograph is simulated using the SimSET software. Images are reconstructed from list-mode
data using a maximum a posteriori (MAP) method. We use a channelized Hotelling observer (CHO)
to assess the detection performance. Both the receiver operating characteristic (ROC) and localization
ROC (LROC) curves are compared for the TOF and non-TOF PET systems. We also study the SNR
gains for TOF PET with different scatter and random fractions. Simulation results match with the
theoretical predictions very well. Both results show that the TOF information improves lesion
detectability and the improvement is greater with larger fractions of randoms and scatters.
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1. INTRODUCTION
In recent years, there has been renewed interest in the time-of-flight (TOF) positron emission
tomography (PET) with the introduction of fast and efficient scintillator materials such as
lutetiumoxy-orthosilicate (LSO), lutetium-yttriumoxy-orthosilicate (LYSO), and lanthanum
bromide (LaBr3). In TOF PET, the time difference between the detection of two coincidence
photons is used to reduce the uncertainty of the annihilation positions. With a timing resolution
Δt, where Δt denotes the full-width-at-half-maximum (FWHM) value, the localization
uncertainty along a line of response (LOR) is reduced from the length of the LOR to Δd =
cΔt/2, where c denotes the speed of light. Thus, TOF PET can achieve noise reduction without
increasing the number of events (i.e., dose or imaging time). Early work of Snyder et al. [1]
showed that for a uniform cylinder with a diameter D and a back-projection reconstruction
algorithm, the SNR gain of TOF PET over non-TOF PET is given by . The formula
predicts that the SNR gain is bigger for larger objects. More recently, Harrison et al. [2] showed
using Monte Carlo simulations that the SNR improves with TOF but the improvement is less
than theoretically predicted. Karp et al. [3] showed using both phantom and clinical
measurements on a Philips Gemini TF PET/CT scanner that TOF PET provides improved
contrast recovery versus noise trade-off as well as faster convergence of contrast recovery in
hot lesions. Kimdom et al. [4] studied the effect of random and scatter fraction in the variance
reduction of TOF PET using a simple scatter model, and they showed that TOF gain increases
with higher fraction of scatters and randoms. Conti [5] theoretically modified the traditional
estimate for the SNR gain by incorporating the random fraction.
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In this paper, we present a theoretical approach to evaluate the performance of TOF PET in
lesion detectability. We considered detection of a known lesion in a fixed background and
assessed the detection performance by using a channelized Hotelling observer (CHO). A
theoretical expression of the SNR of the CHO is presented and used to study the SNR gains
for TOF PET with different scatter and random fractions. Computer simulations were
performed to validate the theoretical predictions. We used the Monte Carlo simulation package
SimSET (Simulation System for Emission Tomography) to model a TOF PET tomograph
[6]. Images were reconstructed using a list-mode maximum a posteriori (MAP) method. Both
the receiver operating characteristic (ROC) and localization ROC (LROC) curves are compared
for the TOF and non-TOF cases.

In [7], Surti and Karp reported their experimental evaluation of a simple lesion detection task
with a Philips Gemini TF PET/CT using a non-prewhitening matched filter and a list-mode
OSEM reconstruction method. Comparing with their work, our work focuses on the theoretical
framework for evaluating the lesion detection performance for TOF PET. In addition, we use
Monte Carlo simulation to quantify the effect of randoms and scatters on the TOF detectability
improvement.

This paper is organized as follows. In Section 2, we describe the system model and the Bayesian
framework we used for image reconstruction. In Section 3, we present methods for lesion
detection using the CHO and the theoretical expression of the SNR of CHO. Computer
simulations and results are given in Section 4 to show the advantage of TOF in lesion detection.
Conclusions are drawn in Section 5.

2. SYSTEM MODEL AND IMAGE RECONSTRUCTION
PET data are modelled as a set of independent Poisson random variables where the expectation
of the measurements, y¯, relates to the unknown tracer distribution x through an affine
transformation

(1)

where y is the measured sinogram data, P the system matrix, and r the expectation of the
background data (scatters and randoms). In our work, the elements in P for the TOF case is
computed using the solid angle formulation and the ray-tracing technique that were proposed
in [8], but modified by a Gaussian TOF kernel

(2)

where  and Δd is the FWHM value of the localization uncertainty.

We reconstruct images using the maximum a posteriori (MAP) criterion with a Gibbs prior.
The MAP estimate is given by

(3)

where L(y|x) = log p(y|x) = Σi(yi log ȳi − ȳi−log yi!) is the log-likelihood, ϕ(x) the prior energy
function, and β the regularization parameter controlling the resolution of the reconstructed
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image. We used a log-quadratic prior with , where R is a positive semi-definite
matrix.

3. DETECTION PERFORMANCE ANALYSIS
3.1. Channelized Hotelling Observer

For a given reconstructed image x^, a linear numerical observer computes a test statistic η
(x^) by

(4)

where t is the observer template. A decision whether the image contains a lesion is made by
comparing η(x^) with a threshold. A plot of the true positive (TP) rate versus false positive
(FP) rate by varying the threshold is called an ROC curve. One figure of merit for the detection
performance is the area under the ROC curve (AUC).

In our work, we use the channelized Hotelling observer (CHO) which has been shown to have
a good correlation with human performances [9]. The test statistic of the CHO is

(5)

where z = E[x^|H 1] − E[x^|H 0] represents the expected profile of the reconstructed lesion
with H 0 being the null hypothesis representing lesion absent and H 1 the alternative hypothesis
representing lesion present. The term U denotes frequency-selective channels thatmimic the
human visual system, n the internal channel noise that models the uncertainty in the human
detection process, and K the covariance of the channel outputs. If we assume that n is zero-
mean Gaussian with a covariance matrix KN, K can be expressed as

(6)

where Σx̂|H1 and Σ x^|H0 denote the covariance matrices of x^ under H 1 and H 0, respectively.
In this paper, we used the differences of four Gaussian (DOG) functions with standard
deviations σ = 2.653, 1.592, 0.995, 0.573 as our channel function [10]. The SNR of the CHO
is given as

(7)

When ηCHO(x^) is normally distributed, the AUC is related to the SNR by

 is the error function.

3.2. Lesion Detectability in MAP Reconstruction
Assuming that the presence of a small lesion has little effect on the Poisson noise in the data,
it was derived in [11] that for the special case where the signal is known exactly (SKE), the
theoretical expression of SNR for the CHO can be approximated as
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(8)

where

(9)

and w is a column vector with its kth element defined as

(10)

{λi, i = 1, …,N} and {µi, i = 1, …,N} are the Fourier coefficients of the column vector
corresponding to the lesion location of F and R, respectively, where F = P′ diag[1/yi]P is the
Fisher information matrix. U ͂ are the Fourier coefficients of the channel functions, and ξi the
Fourier transform of the expected lesion profile. More details on the computation of λi and
µi can be found in [12].

Eq. (8) allows fast evaluation of lesion detectability under varies conditions because there is
no image reconstruction involved. The theoretical expression shows that the TOF gain in lesion
detectability depends on prior parameters (β and µi) and channel noise. When β = 0 and KN =
0, the TOF gain in SNR2 is proportional to the size of the background object.

4. COMPUTER SIMULATIONS
We used the Monte Carlo simulation package SimSET to model a TOF PET Tomograph that
is similar to the one under development at Lawrence Berkeley National Laboratory. The
detector ring has a diameter of 79.5 cm. It consists of 384 crystals of size 6.15×100×25mm3.
We set the axial length to be 10 cm to increase sensitivity. The timing resolution is 200 ps,
which corresponds to a full-width-half-maximum (FWHM) of 3 cm. The coincidence window
is selected as 3 ns. Timing difference of each coincidence event is discretized into 127 timing
bins with a width of 7.5 mm.

We used a 10-cm long elliptical cylinder with uniform activity as the background (Fig. 1). The
cylinder has a long axis of 30 cm and a short axis of 20 cm. A hot rod of 12 mm in diameter
is placed at the center of the phantom as a lesion. The lesion-to-background activity ratio is 3 :
2. The true and scatter coincidences were generated by SimSET directly with an energy window
between 400 keV and 600 keV. For random coincidences, we first calculated their expectations
from singles rate that were obtained by running the SimSET in SPECT mode and then generated
each random coincidence as a Poisson realization. Each random coincidence was assigned a
time difference that is uniformly distributed among the 127 time bins. We generated 80
independent noisy data sets with an average of 1.06M prompt events in each data set. The
random fraction (RF = R/(T + S + R)) is around 24.5% and the scatter fraction (SF = S/(T +
S)) is around 27.8%. All images were reconstructed from list-mode data using the MAP
algorithm with 248×248 3×3×100 mm3 voxels.

Fig. 2 shows reconstructed images with and without TOF information and the corresponding
horizontal profile through the center. In comparison, the non-TOF image is much noisier than
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the TOF reconstruction. The hot spot can hardly be seen in the non-TOF image, but is clearly
visible in the TOF image.

Fig. 3(a) shows a comparison of the ROC curves obtained from the Monte Carlo reconstructions
(β = 2.5×10−13). We can see that the TOF PET (AUC = 0.9718) clearly outperforms the non-
TOF PET (AUC = 0.8770) in terms of lesion detection. We also evaluate the localization
performance by applying the CHO to multiple non-overlapping regions in the images and
plotted the LROC curves in Fig. 3(b). The TP rate in the LROC curve is the joint probability
of detecting and correctly localizing the lesion in the images [13]. The TOF PET has an area
of 0.6719 under the LROC curve, whereas non-TOF PET only has 0.4370. Furthermore, the
probability of correctly localizing the lesion with the TOF PET is 80%, whereas with the non-
TOF PET it is around 60%.

One advantage of using computer simulations is that we can separate true, scattered, and
random events, and study their effect on TOF gain separately. In Fig. 4, we show the measured
and theoretically predicated SNRs for MAP reconstructions with different β values under three
different conditions: true events only, true plus scattered events, and all prompt events. We can
see that the measured SNRs match well with the theoretical predications for all three cases.
The measured SNR gains are given in Table 1, which show that the SNR gain is a function of
the regularization parameter β. For the current configuration, the maximum SNR for both TOF
and non-TOF occurs at β = 2.5 × 10−12, and the gain of the maximum SNR is around 1.8067.
The gain is also greater when scatters and randoms are considered, which is consistent with
the results in [4].

5. CONCLUSIONS
In this paper, we present a theoretical approach to investigate the performance of TOF PET in
improving the lesion detectability. We used the list-mode MAP reconstruction and assessed
the detection performance using CHO. We showed that the TOF PET has better lesion detection
performance than the non-TOF PET. We found that the TOF gain is a function of the
regularization parameter used in image reconstruction and is greater when scatters and randoms
are included. The theoretical predictions match well with computer simulation results.

The theoretical expression provides us a fast approach to evaluate the lesion detection
performance of TOF PET. In future work, we plan to use the theoretical expression to
investigate the performance of TOF PET for different lesion and background configurations.
We also plan to examine the effect of different timing kernels on the detection performance.
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Fig. 1.
Illustration of the phantom used in the simulation.
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Fig. 2.
Reconstructed images using MAP with β = 2.5 × 10−13. (a) Non-TOF reconstruction. (b) TOF
reconstruction. (c) Horizontal profile through the central line of (a). (d) Horizontal profile
through the central line of (b).
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Fig. 3.
ROC and LROC curves for TOF and non-TOF reconstructions with β = 2.5 × 10−13.
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Fig. 4.
Theoretically predicted and measured SNRs for MAP reconstruction with different β values
under three conditions. (a) Only trues are considered. (b) Only trues and scatters are considered.
(c) All prompts (trues, scatters, and randoms) are considered.
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