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Abstract
A panel of cell lines of diverse molecular background offers an improved model system for high-
content screening, comparative analysis, and cell systems biology. A computational pipeline has
been developed to collect images from cell-based assays, segment individual cells and colonies,
represent segmented objects in a multidimensional space, and cluster them for identifying distinct
subpopulations. While each segmentation strategy can vary for different imaging assays,
representation and subpopulation analysis share a common thread. Application of this pipeline to a
library of 41 breast cancer cell lines is demonstrated. These cell lines are grown in 2D and imaged
through immunofluorescence microscopy. Subpopulations in this panel are identified and shown to
correlate with previous subtyping literature that was derived from transcript data.

1. INTRODUCTION
An emerging trend in high-content screening has been to use a panel of cell lines for evaluating
therapeutic responses. The panel introduces the necessary molecular diversity to collect and
analyze heterogeneous responses that lead to subpopulation identification. While the current
method for subtyping has been limited to transcriptome data [1], we introduce a method to
identify potential subpopulations through morphological and localization properties. The main
advantage of the cell-based assays is in a large number of readouts, where every individual cell
can be considered a single sensor responding to the environmental perturbation. These readouts
embed biological and technical variations on a single cell basis in context. The main
disadvantage is the absence of multiple molecular readouts. However, from a computational
perspective, a number of challenges have to be addressed, i.e., segmentation, representation,
and identifying subpopulations. The method is applied to a data set derived from a panel of
breast cancer cell lines. Forty-one different breast cancer cell lines are grown in 2D, stained
for nuclear and proliferation state, and imaged through florescence microscopy.

We have developed a computational pipeline that quantifies cellular morphology through
segmentation and multidimensional representations. Subsequently, this representation enables
the identification of subpopulations among all cell lines. The pipeline consists of three major
steps: (i) segmentation, (ii) morphological feature extraction, and (iii) consensus clustering of
morphological features.

2. MULTIDIMENSIONAL PROFILING OF CELLULAR MORPHOLOGIES
The first step in multivariate profiling is segmentation, which separates individual nuclei from
their background, and decomposes touching nuclei. Segmentation enables multivariate
profiling and subsequent subtyping.
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2.1. Nuclear segmentation
In a typical 2D cell culture assay that is stained for nuclear compartment, some nuclei are
isolated and others are clustered together to form clumps. As a part of our operational base,
we have developed a system that first detects isolated nuclei, and then decomposes a clump of
nuclei based on convexity analysis [2]. This system has recently been improved with a
significantly better computational profile, and is being integrated into our high-content
screening platform [3]. In this implementation, segmentation of nuclear regions is realized by
detecting elliptic features [4] corresponding to potential bright regions. These regions are
further filtered for their intensities and morphological features.

Let the linear scale-space representation of the original image I0(x, y) at scale σ be given by:

(1)

where G(x, y; σ) is the Gaussian kernel with a standard deviation of σ. For simplicity, I(x, y;
σ) is also denoted as I(x, y) below. At each point (x, y), the iso-intensity contour is defined by:

(2)

where (Δx, Δy) is the displacement vector. Expanding and truncating the above equation using
Taylor’s series, we have the following estimation:

(3)

where

is the Hessian matrix of I(x, y). The entire image domain is divided by Equation (2) into two
parts:

(4)

(5)

or locally

(6)

(7)
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If H(x, y) is positive definite, then the region defined by Equation (4) is locally convex.
Similarly, if H(x, y) is negative definite, then the region defined by Equation (5) is locally
convex. To determine whether H(x, y) > 0, or whether H(x, y) < 0, we analyze this feature in
both cases: (I) H(x, y) > 0. Then Ixx > 0, Iyy > 0, and hence Ixx + Iyy > 0, and positive Laplacian
means that (x, y) is a “dark point,” i.e., a point that is darker than its neighbors; and (II) H(x,
y) < 0. Then Ixx < 0, Iyy < 0, and hence Ixx + Iyy < 0, and negative Laplacian means that (x, y)
is a “bright point,” i.e., a point that is brighter than its neighbors. Finally, computed masks are
refined against intrinsic gradient-based features. Figure 1 shows two examples of segmentation
from two fields corresponding to two different breast cancer cell lines. These images clearly
indicate that (i) cellular responses are heterogeneous, and (ii) morphological features are not
distinguishable to the naked eye. These samples have been fixed after 48 hours in media without
any perturbation (e.g., therapeutic agents).

2.2. Phenotypic feature extraction
Phenotypic signatures are computed from every imaging probe that labels an organelle or
expression of a specific protein, and the details can be found in our previous research [5].
Regardless of the assay, our system computes three distinct groups of features corresponding
to morphology, structure, and fluorescence signals from each imaging probe. For example, in
the case of a marker associated with the nuclear region, morphological features of shape such
as area, aspect ratio, and orientation are computed. Some of these features are computed by
fitting an ellipse to the shape features for a more accurate representation. Other shape features
correspond to bending energy at multiple scales, which are computed from bounding contours.
Structural features correspond to textural attributes that are detected from first-, second-, and
third-order derivatives of oriented Gaussian filters [5]. The fluorescence signal is then
quantified at global and local scales. While global representation relies on the average signal
within the organelle of interest, local representation characterizes how the fluorescence signal
is spatially distributed within the nuclear mask. An example of this representation is the change
in the fluorescence signal along the radial direction originating from the center of the mass.
Since the texture feature vector is rather large, its dimensionality is reduced through principal
component analysis (PCA) for subsequent analysis. We opted not to apply the PCA to the entire
representation, since the physical meaning of the feature set will be lost during the projection
operation. A total of 324 texture features are computed and, through PCA dimensionality
reduction, 10 projected features that account for 99% of the total variance are retained for
further analysis. Finally, computed features are normalized with a zero mean value and a
variance of one across all samples.

2.3. Phenotypic clustering
The clustering of phenotypic signatures contributes to the categorization of morphological
features, and the subsequent correlation analysis with the expression data. However, three
issues need to be addressed: (i) objects have heterogeneous morphologies for the same cell
line, and labeling can be inconsistent; (ii) the number of objects for each cell line is various;
and (iii) there is no prior knowledge of the number of clusters. An important aspect of clustering
has to do with validation, since most clustering methods are sensitive to the initial conditions.
A proven method is consensus clustering, which is widely used for class discovery and the
visualization of gene expression microarray data [6]. This iterative method is based on
resampling, and is designed to partition the observed gene expression profiles into a set of
exhaustive and nonoverlapping clusters. In each iteration, clustering is performed on a random
subset of the data, and the consensus across repeated runs is aggregated in a matrix whose
elements represent the probability for a pair of cell lines to be in the same cluster. Further
visualization of the consensus matrix enables discovery and validation of the clusters in the
observed samples. Our goal is to partition phenotypic fingerprints of objects associated with a
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panel of breast cancer cell lines into a set of exhaustive and non-overlapping clusters. The
consensus clustering method is slightly modified, as follows:

1. Select the number of clusters, n;

2. Construct an equal number of samples from each of the cell lines through random
sampling;

3. Cluster randomly selected samples using the K-means method;

4. Construct a probability distribution function by assigning samples for each cell line
to the assigned cluster;

5. Construct the similarity matrix whose elements are computed from the Kolmogorov-
Smirnov (KS) test of the probability distributions between every pair of cell lines;

6. Repeat steps 2-5 for a fixed number of k iterations, and compute the consensus matrix
from similarity matrices;

7. Repeat steps 1-6 for different n.

The KS test is nonparametric, makes no assumption about the distribution of the data, and
outputs a p value between two distributions (e.g., pij). Each element of the similarity matrix
M is represented as Mij = 1 – pij, and the final consensus matrix is constructed by averaging
all similarity matrices for all k iterations. Subsequent visualization of the consensus matrix
enables visual feedback for the performance of the clustering results.

3. EXPERIMENTAL RESULTS
A panel of 41 breast cancer cell lines was cultured in 2D, and samples were imaged with
fluorescent microscopy at 10X. The data set includes 3,648 fluorescent images from the 41
breast cancer cell lines. This data set has produced 861,906 cells from all 41 cell lines. After
segmentation and feature extraction, each cell is represented with a 34-dimensional index. In
the modified consensus clustering algorithm, parameters are set at k = 100 and n = 2, 3, 4, 5.

In order to visualize clustering results, the consensus matrix is treated as a similarity matrix
and reordered using hierarchical clustering. In this reordered consensus matrix, cell lines with
similar morphologies are adjacent to each other; however, the map is inverted for visualization.
Ideally, for a perfect consensus matrix, the displayed heat map should have crisp boundaries.
These matrices are generated for a number of clusters ranging from 2 to 5, as shown in Figure
2. Consensus clustering assesses stability for the identification of potential subpopulations, and
provides visual feedback as a potential component for the decision-making process. By
computing a cumulative distribution from consensus matrices, the shape of cumulative
distribution function (CDF) and its progression as a function of number of clusters suggest the
presence of desirable subpopulations. An earlier paper by [6] evaluated this method, proposed
a new measure of “concentration histogram” computed from the change in the shape of CDF,
and suggested that the peak in the concentration histogram corresponds to a preferred number
of clusters. The concentration histogram of Figure 3 suggests that two clusters best represent
the content of subpopulations. In comparison with the transcript-based clustering results of
similar data (Table 1 in [1]), the majority of cell lines in the first subpopulation in Table 1 are
luminal (12 luminal, 4 basal, and 4 unknown cell lines), and the majority of cell lines in the
second subpopulation are basal-like (14 luminal, 5 basal, and 2 unknown cell lines).
Additionally, the majority of lines in the first and second clusters appear to be estrogen receptor
(ER) positive and negative, respectively. These results indicate a strong association between
subpopulations identified through transcript data and morphometric analysis. As a final step,
we also examined cellular responses to CI1040, which is an anticancer drug designed to enforce
cell cycle arrest in G1. Again, the same subpopulations persisted after the incubation of each
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line in the panel, which indicates that morphometric subpopulations remain stationary
following a drug treatment.

4. CONCLUSION
In this paper, morphometric properties for a panel of breast cell lines were computed, and
subpopulations were identified as a result of multidimensional representations of cellular
features. The method has been applied to a data set of 41 cell lines grown in 2D cell culture
models. We have shown that computed subpopulations correlate with an earlier analysis of
transcript data. Our continued research is to couple morphometric data with array-based data
(e.g., transcript, methylation), and to compute molecular predictors of each subpopulation.
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Fig. 1.
Segmentation of two fields of cells grown in 2D shows that clumped cells can be partitioned.
The secondary stain is BrdU, which labels for proliferation. The top and bottom rows
correspond to morphological characterization of MCF12A and SUM185PE, which have been
labeled as basal and luminal in the literature, respectively. The significance of this data is that
these lines appear quite similar; however, through morphometric analysis, they can be
differentiated.
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Fig. 2.
The consensus matrices for different numbers of clusters based on morphological
representations are shown. A darker block indicates higher morphological similarity between
two cell lines.
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Fig. 3.
Confidence in the number of clusters: (a) CDF for each cluster and (b) change in CDF as a
function of cluster size indicates that three is the optimum number of subpopulations.
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Table 1

Two subpopulations of the the 41 breast cancer cell lines grown in 2D cell culture assay are
revealed through consensus clustering. The cell lines listed on the left are mostly luminal, while
the cell lines on the right are mostly basal. Luminal and BasalA/B are subpopulations in
previous transcript-based clustering results [1].

Cluster 1 Cluster 2

Cell line Type Cell line Type

SUM185PE Luminal AU565 Luminal

ZR751 Luminal HCC1143 BasalA

MDAMB415 Luminal MCF12A BasalB

BT474 Luminal SUM229PE unknown

HCC70 BasalA SUM159PT BasalB

MDAMB453 Luminal BT549 BasalB

LY2 Luminal HCC38 BasalB

MDAMB175VII Luminal HBL100 BasalB

MCF7 Luminal HCC3153 BasalA

MDAMB361 Luminal MDAMB157 BasalB

ZR75B Luminal MDAMB231 BasalB

HCC1419 Unknown SUM52PE Luminal

HCC1500 BasalB HCC1937 BasalA

HCC1806 Unknown SUM1315MO2 BasalB

184A1 Unknown HCC1428 Luminal

184B5 Unknown HCC1954 BasalA

MDAMB436 BasalB T47D Luminal

MDAMB468 BasalA HS578T BasalB

CAMA1 Luminal SUM149PT BasalB

UACC812 Luminal HCC1395 Unknown

SKBR3 Luminal
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