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Abstract
Multimodality imaging systems combining optical techniques with MRI/CT provide high-resolution
functional characterization of tissue by imaging molecular and vascular biomarkers. To optimize
these hybrid systems for clinical use, faster and automatable algorithms are required for 3-D imaging.
Towards this end, a boundary element model was used to incorporate tissue boundaries from MRI/
CT into image formation process. This method uses surface rendering to describe light propagation
in 3-D using diffusion equation. Parallel computing provided speedup of up to 54% in time of
computation. Simulations showed that location of NIRS probe was crucial for quantitatively accurate
estimation of tumor response. A change of up to 61% was seen between cycles 1 and 3 in monitoring
tissue response to neoadjuvant chemotherapy.
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1. INTRODUCTION
A major focus of on-going studies has been to increase the spatial resolution and create
complementary imaging systems by combining different modalities, such as MRI-DOT [1], X
Ray-DOT [2], and Ultrasound-DOT [3]. Multimodality imaging systems are emerging as
integrative solutions for imaging biophysical, functional as well as structural changes in tissue
composition. At Dartmouth College, a combined MRI with near infrared (NIR) imaging system
has been developed for diagnosis of breast cancer and treatment monitoring [1]. An alternate
system combining CT with fluorescence imaging is also in its final stages, for molecular
imaging in small animals. These hybrid systems have bypassed the resolution limit of DOT
(3-5 mm) in favor of the sub-millimeter resolution possible from MRI, X-Ray and Ultrasound
by utilizing a-priori structural information to guide the DOT image recovery. This approach
merges the strengths of structural information provided by a high-resolution modality with the
strengths of functional content provided by optical spectroscopy.

These technical developments in imaging systems warrant faster and more accurate algorithms
that can intelligently incorporate the anatomical features from MRI/CT into the optical image
recovery. Towards this end, a boundary element approach has been developed for 3-D image-
guided NIR spectroscopy (IG-NIRS) under the assumptions that the tissue boundaries obtained
from MRI/CT are exact and that each tissue type is piece-wise constant [4]. The strength of
the BEM lies in easier and more reliable mesh generation schemes since only surface
discretization is required. This in turn makes automation possible for processing large clinical
data sets. This method can be applied for spectroscopy by solving the diffusion equation; and
for fluorescence by solving a set of coupled diffusion equations for excitation and emission
wavelengths.
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In this work, we have presented results from optimization of this method for clinical use in
terms of computational time and guidance for alignment of optical fiber probes. This was used
to monitor response of breast tissue in-vivo to neoadjuvant chemotherapy showing that
spectroscopy may yield important additional information to MRI for predicting response.

2. METHODS
The diffusion approximation to radiative transport equation was used to model light
propagation in tissue. This equation is valid for imaging domains where the scattering
dominates over absorption as is the case in the breast tissue in the near infrared wavelength
range[5].

Under the assumption that tissue boundaries (interior and exterior) can be obtained from MRI
or CT and each tissue type is piecewise constant, the diffusion equation reduces to a modified
Helmholtz equation given by:

(1)

where kl is the wave number, constant in sub-domain l [6,7], and for a particular frequency
ω, .

The fundamental Green's function solution is readily available for this equation and can be
used to derive the BEM formulation[8]. The details of this formulation can be found elsewhere
[4].

The image reconstruction involves an iterative procedure based on minimization problem given
by [9]:

(2)

where M is the total number of measurements at each wavelength, and  and  are the
measured and calculated fluence respectively, at the boundary for each measurement point j.
By coupling the measurements obtained at all the wavelengths together and applying spectral
relationships defining absorption characteristics of oxyhemoglobin, deoxyhemoglobin and
water as well as scattering relationships defined empirically, into the reconstruction, it is
possible to obtain the NIRS parameters directly [10]. This use of spectral constraints is known
to improve accuracy of recovered spectroscopic parameters and reduce cross-talk [10-12]. We
implemented this into the BEM-based reconstruction so that the update in the chromophore
concentrations and scatter could be recovered directly. Results from experiments showed that
changes in total hemoglobin could be tracked linearly and the hill curve for oxygen saturation
could be recovered with a mean error of 6.6%[13]. The BEM reconstructions were found to
be faster than FEM for multi-region problems as described earlier[4]. This was applied to
recover estimates of breast tissue in-vivo imaged using the hybrid-imaging framework. The
details of the instrumentation have been described previously[1]. Briefly, frequency domain
measurements of amplitude and phase after transmission through breast tissue were obtained
simultaneously with the MRI. The combined data was processed to yield NIRS estimates of
total hemoglobin, oxygen saturation, water and scatter in the adipose, fibroglandular and tumor
tissues.
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3. RESULTS
3.1. Image-segmentation & Surface-rendering

The anatomical structures of interest were obtained from MRI for breast spectroscopy using
image segmentation techniques and surface rendering. A commercial software package
(MimicsTM, Materialise Inc.) was used for this purpose, which employs thresholding and
region-growing techniques. The surface rendering from segmented adipose, fibroglandular and
tumor tissues from a subject with cancer is shown in figure 1. This technique works seamlessly
with clinical data though sometimes manual editing of the segmented masks may be required
for noisy images. This can also be used for segmentation of CT images to recover imaging
domain description for fluorescence imaging using BEM. An example of this is shown in Figure
2. These surfaces can be used directly by the BEM toolbox for recover of tissue-specific
volumetric estimates.

3.2 Parallel Processing of Image-recovery
The reconstruction for the NIRS parameters benefits from parallelization especially because
3-D computing is time-consuming. This was accomplished using Matlab distributive
computing toolbox on a beowoulf cluster comprising of 8 processors per node with shared
memory of up to 16 Gigabytes. The time of computation for a single forward model on a patient-
specific imaging domain segmented from MRI, is shown in Figure 3.

Using two processors per node showed an improvement of 30% with respect to using a single
processor per node. Use of 8 processors improved the time by 54%. Currently, this is the
configuration used for clinical studies.

3.3 Alignment of NIR probe with location of cancer
The optical fiber probe positioning will likely affect the resulting reconstructed values in the
tissue types especially in the case of cancer. This was found to be true in a clinical study
presented earlier. In evaluate the effect of the imaging plane on the recovered tumor values
further, a simulation study was undertaken. In this study, a typical breast shape obtained from
MRI segmentation was used, with a 32mm tumor simulated in the center of the domain (Figure
4(a)). The red markers show the optical fiber positions. The plane of the fibers was varied
systematically in distance separations of 2.5 mm from the center of the tumor to the nipple.
Measurements of intensity and phase were simulated for each plane and 1% noise was added.
Typical breast concentrations were used for this study. Then error in the reconstructed values
for total hemoglobin and water are shown in Figure 4(b). The error in hemoglobin scaled with
distance with a slope of 2.3, indicating that there is a 23% error incorporated into the estimation
for every 1 cm offset in the probe placement. There is nearly 20% error in water for 1 cm offset
in the distance of the imaging plane. This illustrates the importance of aligning the optical
probe using image guidance. Further simulations are underway to understand the trend in these
estimates.

3.4 Changes in NIRS Parameters during neoadjuvant chemotherapy
The BEM approach was used to reconstruct IG-NIRS estimates of total hemoglobin, oxygen
saturation, water and scatter in a subject undergoing neoadjuvant chemotherapy. A 36-year old
volunteer was imaged consequtively during the course of treatment through six cycles of TAC.
This subject was confirmed by pathology after treatment, to have complete pathological
response. The recovered estimates for each tissue type (adipose, fibroglandular and tumor
delineated through MRI) were normalized and the overall response was obtained by
multiplying the response for each tissue type. This was done to desensitize the measurement
to any changes in the optical fiber placement since the background values will be less affected

Srinivasan et al. Page 3

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2010 June 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



by changes in the probe distances. The results are shown in Figure 5. There was a 28% change
in total hemoglobin in the overall breast between cycles I and II; and 61 % between cycles I
and III.

4. CONCLUSIONS
A BEM approach was used to model light propagation in tissue using only surface
discretization. This was optimized for clinical use by parallelization in a multi-processing
cluster, which provided a 54% improvement in time of computation. The method was used to
study the importance of aligning the optical measurement plane to lie in the plane of the tumor.
Simulations showed that 23% error is incorporated for a 1cm offset in the plane of the optical
measurement. 20% error in water was incorporated for this offset. This method was further
used to monitor response to neoadjuvant chemotherapy; results showed a decrease of 28%
between cycle I and II; and 61% between cycle I and III indicating that the method may be a
useful add-on to MRI for predicting response to therapy. Further clinical studies are underway
to evaluate this in a phase I clinical trial.
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Figure 1.
(a) Example of thresholding of fibro-glandular layer (tagged in turquoise color) from an MR
slice is shown. (b) Different surfaces obtained using thresholding: outer surface is shown as
transparent, with fibro-glandular tissue in blue as semi-transparent and tumor in yellow as
opaque.
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Figure 2.
(a) Cross-section of CT images of a mouse head is shown; (b) The outer surface (blue), bone
(yellow) and brain (red) were segmented using Mimics and are shown here.
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Figure 3.
The time of computation for a forward model solving the diffusion equation on a patient-
specific two-region mesh is plotted for varying number of processors. Current configuration
uses 8 processors for clinical data analysis, which provides an improvement of 54% in time.
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Figure 4.
(a) Segmented breast shape used in simulation study with a simulated 32mm tumor in the center
of the domain. Using varying forward and reconstruction meshes and 1% noise in simulated
data, the error in the recovered values for total hemoglobin and water are shown in (b) for
varying distance of imaging plane (in mm).
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Figure 5.
Changes in total hemoglobin during the course of neoadjuvant chemotherapy.
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