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Abstract
A multispectral camera is capable of imaging a histologic slide at narrow bandwidths over the range
of the visible spectrum. While several uses for multispectral imaging (MSI) have been demonstrated
in pathology [1,2], there is no unified consensus over when and how MSI might benefit automated
analysis [3,4]. In this work, we use a linear-algebra framework to investigate the relationship between
the spectral image and its standard-image counterpart. The multispectral “cube” is treated as an
extension of a traditional image in a high-dimensional color space. The concept of metamers is
introduced and used to derive regions of the visible spectrum where MSI may provide an advantage.
Furthermore, histological stains which are amenable to analysis by MSI are reported. We show the
Commission internationale de l’éclairage (CIE) 1931 transformation from spectrum to color is non-
neighborhood preserving. Empirical results are demonstrated on multispectral images of peripheral
blood smears.
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1. INTRODUCTION
Pathologists rely on subjective color cues to interpret tissue texture and morphology. Decision
support algorithms have initiated a shift from a qualitative to a quantitative paradigm in
pathology. The benefits, namely higher accuracy coupled with less variability, make automated
analysis an increasingly important tool for the pathologist. Multispectral imaging (MSI)
exposes new opportunities within quantitative pathology. The three color channels of a
standard image represent a small subspace of the spectral data that gave rise to it [5]. With
access to the spectral distribution of each pixel, quantitative algorithms have access to
previously-unexplored data.

A number of specific uses for MSI in pathology have been advanced. For example, using
spectral unmixing, one can rescue specimens which are over stained, separate stains which co-
localize and are difficult to visualize, and separate mixed fluorescent signals [1,2]. However,
there is little a priori evidence that the additional spectral channels provided by MSI will be
orthogonal, relevant, or useful to the researcher. In a recent study, Boucheron et al. found
minimal (< 1%) performance improvement using multispectral imagery over a standard image
for pixel-level nuclear classification of routine H&E images [4]. In a different application,
Roula et al. found an improved classification ability using MSI with H&E slides of radical
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prostatectomies [3]. The lack of clear consensus over the utility of MSI for bright-field imaging
prompts a closer look at the underlying principles.

Rather than examining specific pathological applications, which depend on the properties of
the biological specimen, stain type, tissue morphology, etc., this paper approaches MSI from
its colorimetry fundamentals. By investigating the formation of color from the spectral power
distribution, we attempt to narrow the uncertainty of knowing when a spectral image captures
information absent from a standard image.

2. COLOR SPACES AND THE MATRIX REPRESENTATION
The absorbance of a histological specimen is defined as the log of the transmitted light intensity
over the incident light intensity, a = − log(I/I0). Using the Beer-Lambert law, the absorbance
is expressed as the product of the path length, spectral absorption coefficient, and concentration.
The optical density of a material is the absorbance per unit length. Crucially, this quantity is
independent of the background illumination level.

An RGB image is a multidimensional array of size m × n × 3, while a multispectral image is a
matrix with m × n × λ dimensions. The human eye converts between these spaces naturally by
means of three wavelength-specific cones. Mathematically, the transformation between a
spectrum and the color it represents can be written as an integral over the visible spectrum
[5]. If p⃗ contains the color components and X(λ) the continuous spectrum, we have

(1)

where κ is a constant and ai are the color matching coefficients corresponding to the color space
of interest. In reality, we sample the spectrum at a fixed number of equally-spaced wavelengths.
Eqn. 1 then becomes the sum,

(2)

In 1931, the Commission internationale de l’éclairage (CIE) established an international
standard in which three “tristimulus” values, (X, Y, Z), uniquely define a color [6]. Similar to
the well-known RGB system, the XYZ values are obtained in the same manner as Eqn. 1, X =
κ ∫λ X (λ)x̄(λ)dλ (with similar eqns. for Y and Z), where x̄, ȳ, z ̄ are the color matching coefficients
from the CIE 1931 protocol.

We define an intermediate representation of the cube in order to cast Eqn. 2 into conventional
linear algebra notation. Let N = m * n be the number of pixels in the image and λ be the number
of capture wavelengths. Then X is the λ × N matrix formed by drawing the elements of the
cube along the lambda dimension in a column-wise order (i.e. columns of X contain the
intensity of each pixel at each spectral value). Using this notation, we write Eqn. 2 as,

(3)

Here A is the scaled matrix of the color matching coefficients, X ∈ ℝλ is the multispectral
cube, and I ∈ ℝ3 is the resulting image. Since the dimension of the image is less than the
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dimension of the cube, it is generally not the case that A is invertible. Such a system has 3
equations for λ unknowns, or (λ − 3) degrees of freedom. To convert from the spectral space
to RGB, the cube is first transformed into the CIE XYZ space, then to RGB, ARGB AXY Z X =
IRGB, where ACIE and ARGB are color-matching matrices from Λ → XY Z and XY Z → RGB,
respectively. In this work, we adopt the conversion matrices established by the CIE 1931
protocol. The coefficients of the transformation are plotted in Fig. 1. For clarity, we abbreviate
AXY Z as A for the remainder of the paper.

3. METAMERISM
Two different spectra which are perceived as the same color are called metamers. Formally,
metamers are different spectral power distributions which induce the same CIE XYZ
tristimulus value under a given illuminant. There are an infinite number of spectral distributions
which give rise to each color [5]. Next, we derive a condition under which this metamerism
occurs.

Denote the pixels in the cube by xij and those in the image by plj, two pixels are mapped to the
same value when,

(4)

It is not necessary for the two pixels in the target image to be strictly equal. We therefore add
a slack term. Eqn. 4 then becomes,

(5)

Note that εl ∈ ℝ3 and is a function of the color space coordinates. From AX = I, we have for
xi1,

For a second pixel, xi2, to meet the conditions in Eqn. 5, the following equalities hold (for each
plj),

Subtraction of these equations yields a set of inequalities,

The condition for metamerism is then the following, with one equation for each dimension of
I,
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(6)

For two pixels from the cube to be metamers, the spectrum of each pixel, subtracted in a
pairwise fashion and multiplied by the appropriate color-matching coefficient, must fall within
a small range around zero.

Eqn. 6 illustrates an interesting property of the CIE color matching functions. Wherever a is
small, the spectral distribution has freedom to vary. That is, for each channel (X, Y, and Z)
there are regions where two spectra can greatly differ, but still produce the same color to the
observer. In Fig. 2, we plot the log of the maximum variance at each wavelength, for a color
matching tolerance of ε = 5%. To illustrate using the X channel (red), two spectra can have
almost any value at 700nm, but must match very closely at 600nm. It is in the variable regions
where multispectral imaging has discriminating ability beyond traditional images.

The bottom plot (black) of Fig. 2 shows the maximum difference for the vector magnitude of
all three channels. As expected, the power distribution has the most freedom outside the human
visible spectrum. The most flexibility inside the visible spectrum occurs around 500nm (blue-
green) and at the higher wavelengths around 650–700nm (red). It is worth mentioning that this
observation agrees with single-channel classification experiments in [4], where classification
performance was computed using only one of the spectral bands at a time. Within the visible
spectrum, Boucheron et al. found the best performance in the red portion (~ 600 – 650nm).

Eqn. 6 also advances a means to determine histological stains which may be amenable to
multispectral imaging. Stains have unique spectral absorption profiles, several of which are
plotted in Fig. 3 (data courtesy of [2]). Those stains which absorb heavily in regions where the
color-matching coefficients are small may see a benefit from MSI. Eosin, for example, has a
sharp peak at approximately 525nm, which is a region of high metameric flexibility. On the
other hand, DAB peaks at the low end of the spectrum, where there is little flexibility, and
would thus be less of a candidate for MSI. Further experiments are necessary to determine if
this theoretical premise holds under real biological conditions.

4. NEIGHBORHOOD PRESERVATION
In Sec. 3, it was shown that certain regions of the spectrum possess flexibility in the absorbance
necessary for a given color. This property suggests the CIE transformation is not “neighborhood
preserving.” That is, if each pixel is plotted as a point in λ-dimensional space, points which are
far apart can be mapped very close in XYZ, or points which are close mapped far. Clustering
and classification algorithms rely on these relative data relationships in the form of a distance
matrix. If the transformation appreciably changes the distance matrix, it will certainly affect
the outcome of the data analysis.

The effect of A on local structure was tested on spectral images. k nearest neighbors were
computed in ℝλ for each pixel xij. The transformation was then applied and the neighbors
recomputed in ℝ3. The normalized size of the intersection between the neighbor lists, |
{xij }X ∩ {xij }I |/k, was computed for several values of k. This procedure was applied to 160
256×256 multispectral images of peripheral blood smears.1 A k-D tree implementation [7] of
the nearest neighbor search, with preprocessing time O(kN log(N)) and expected search time
log(N), was necessary to handle the data set in reasonable time.
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Results (shown in Fig. 4) confirm the CIE transformation is not neighborhood preserving. Even
at the neighborhood size k = 1000 (1.5% of the data set), approximately half of the points retain
less than 50% of their respective neighbors. On average, 40% of points retain none of their
closest 10 neighbors in XYZ space.

The same effect can be shown at the image level. In Fig. 5, 1000 pixels with RGB values closest
to those of the blood platelet (top right) are highlighted. The highlighted pixels include two
distinct structures, namely the platelet and the nuclei of the neutrophil (left). These pixels are
nearly metameric; without relative image context they are indistinguishable by RGB. A
qualitative examination of the spectra, however, indicates separation in spectral space,
particularly near the regions of high metameric flexibility. A basic decision-boundary classifier
achieved 95% overall accuracy, with a 100% true positive rate, for distinguishing platelet from
neutrophil, using the 550nm band alone. This performance could not be reproduced using RGB
due to the information loss associated with metamerism.

5. CONCLUSIONS
Whether performed by the eye or a computer, color is formed through a constrained summation
across the spectrum. Metamerism is therefore an unavoidable consequence of brightfield
imaging. In this work, we used a linear-algebra framework to investigate the relationship
between the multispectral image and its color counterpart. The concept of metamers was
introduced and used to derive regions of the visible spectrum where MSI may provide an
advantage, as well as histological stains which are, theoretically, amenable to analysis by MSI.
We empirically showed the CIE 1931 transformation from spectrum to color is non-
neighborhood preserving.

For multispectral imaging to move from fringe technology to a mature diagnostic tool, it is
helpful to anticipate applications for which it adds value. MSI increases time (in both the
acquisition and processing stage) and storage costs. True color slide scans may contain in
excess of 109 pixels and occupy upwards of 15 gigabytes of storage space, a figure which grows
multiplicatively when spectral imaging is introduced. Increases in computing power and
storage will certainly alleviate these practical limitations, but are no substitute for the targeted,
judicious application of the technology.
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Fig. 1.
Coefficients of the matrix ACIE, from the CIE 1931 protocol.
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Fig. 2.
Log of the maximum spectral difference between two metamers at each wavelength (assuming
the spectra are otherwise equal), for a color matching tolerance of ε = 5%. Red (top), green
(2nd), and blue (3rd), represent CIE X, Y and Z, respectively. Black (bottom) shows the
maximum difference for the magnitude of all three channels.
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Fig. 3.
Spectra of several histological stains. Data courtesy of the authors of [2].
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Fig. 4.
Histograms of the mean fraction of neighbors retained, after transformation by A, in 160
multispectral blood smear images, N = 65, 536. On average, 40% of points retain none of their
closest 10 neighbors when transformed to XYZ space.
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Fig. 5.
Top left: 60× RGB image of a blood smear showing a neutrophil (large polynuclear cell on
left), red cells, and a platelet (small blue dot). Top right: The 1000 closest pixels to the RGB
color of the platelet are highlighted in red. Bottom: The spectra of the neutrophil pixels are
plotted in blue, while those of the platelet are plotted red.
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