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ABSTRACT edges. The common approach to compressing such a sparse image

. ) i o _ . isto compute its transform coefficients and then store only the most
The increased high-resolution capabilities of modern medical im=gjgnificant” ones. However, this is an inherently wasteful process
age acquisition systems raise the crucial tasks of effectively stofj, terms of both sampling rate and computational complexity), since
ing and interacting with large databases of such data. The ease e gathers and processes the entire image even though an exact rep-
image storage and query would be unfeasible without compressiopegentation is not required explicitly.
Wh'qh (gpresents hlgh-resolu_tl_on images with a relatl_v_ely small set Compressed sensing (CS) is a recently introduced framework
of S|gn|f|(;ant transform coeffluents. Due to t.he S.pECIfIC content ok, simultaneous sensing and compression [4, 5] enabling a poten-
medlcgl Images, com_pressu?]n often :ebsults in T}lghlyhsparse repr%—a”y significant reduction in the sampling and computation costs.
svfentatlons In ";propf'a‘e grst onorlir_]a ?Se‘?' The ml erent properly narticular, a signal having a sparse representation in a transform
of compressed sensing (CS) working simultaneously as a sensifg.qiq can pe reconstructed from a small set of projections onto a sec-
and compression protocol using as_,me_tl_l subset of rgnd_om prOJectIO5‘nd, measurement basis that is incoherent with the first one. The
coefficients, enables a potentially significant reduction in storage résaiority of previous studies about the sparse representation and re-
quwe_rr_lents_. In this paper, we mtrod_uce a Bayes_lan _CS approach f%nstruction of a signal in an over-complete dictionary using CS,
obtaining highly sparse representations of medical images based Bve constrained-based optimization problems
a set of noisy CS measurements, where the prior belief that the vector Several recent papers exploit the sparsity of. images using CS to

of transform coefficients should be sparse is exploited by mOde“n%crease the compression rates [6, 7]. In addition, the CS framework
its probability distribution by means of a Gaussian Scale Mixture.has been already applied in the fiéld of Magnetic, Resonance Image
The experimental results show that the proposed approach maintai RI) reconstruction with very promising results [8, 9]. Recently, a
the reconstruction performance of other state-of-the-art CS metho ayesian CS (BCS) framework was introduced [10j re.s,ulting in cer-
while aphie\_/in_g significantly sparser representations of medical imfain improvements when compared with norm-based CS methods.
ages with distinct content. In particular, the prior belief that the vector of transform coefficients
Index Terms— Bayesian compressed imaging, Gaussian scalshould be sparse was expressed by employing a hierarchical model
mixture, medical imaging, sparse Bayesian learning, sparse repras a sparsity-enforcing prior distribution on the sparse coefficients
sentation. vector. In the present work, we model directly the coefficients vec-
tor using a Gaussian Scale Mixture (GSM). The experimental results
reveal that this approach yields a significantly sparser representation
of several medical images with distinct content, while also maintain-

The design of modern high-resolution imaging devices in medical"? & high reconstruction performance.

o ; . ~ The paper is organized as follows: in Section 2, we briefly re-
appllcatlons have mcrease(_:i the am"“”t. of image data at an engcz)iew the main concepts of BCS and introduce the GSM-based BCS
sive rate. The storage and interaction with large databases of medi-

. . o .method. In Section 3, we compare the performance of the proposed
cal image data necessitates the development of efficient compressgﬁproach with recent state-of-the-art CS methods in terms of the de-

techniques and standards [1, 2. However, even higher compressig ree of sparsity and the reconstruction quality, while we conclude in
rates could potentially suffice to carry out a specific task, such as ingz . !
age classification and retrieval, where a high-quality reconstructiggnec“on 4.
of the still images is not necessary. 2. BAYESIAN CS RECONSTRUCTION

Several studies [3] have shown that appropriate transforms (e.g., )
wavelets and sinusoids) of many natural signals often reveal certairet ¥ P& @iV x N matrix, whose columns correspond to the trans-
structures allowing for compact and sparse representations. Thigrm basis functions. Then, a given imagec R" (reshaped as a
also holds for many medical images, since they consist primarilgolumn vector) can be representedfas- ¥, wherew € RY is
of edges on a relatively homogeneous background. For instancthe coefficient vector. Obviousl)fandw are equivalent represen-
the 2-D Discrete Wavelet Transform (DWT) of such images resultgations of the image, wittfbeing in the space domain aadin the
in a large number of coefficients with negligible amplitude and a(transform)® domain. As mentioned above, for natural images with
small number of large-amplitude coefficients concentrated about thepecific content, such as edges and lines in the case of many medical
images, the majority of the componentsiwhave negligible ampli-
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1. INTRODUCTION




ponents ofi decay at a power-law. ods, the proposed method consists in modeling directly the prior of
Consider also ad/ x N (M < N) measurement matri (the & with a heavy-tailed distribution, which promotes its sparsity. For
over-complete dictionary), where the rows®fare incoherent with  this purpose, we approximate the prior distributionubby means
the columns ofP. For instance, le® be a matrix with independent of a Gaussian Scale Mixture (GSM). This means thaan be writ-
and identically distributed (i.i.d.) Gaussian entries. Such matricesen in the form = VAG, whereA is a positive random variable
are incoherent with any fixed transform matfxwith high proba- andG = (G1,Ga,...,GnN) is a zero-mean Gaussian random vec-
bility (universality property) [5]. tor, independent of4, with covariance matriX:. The additional
If f'is compressible in, then it is possible to perform directly assumption that the components(dire independent yields a diag-
a compressed set of measuremgiitesulting in a simplified image  onal covariance matri€ = diag(o?,...o%).

acquisition system. The relation between the original imﬁmd From the above, the density af conditioned on the variabld
the CS measuremenjss obtained through random projectiogs= is a zero-mean multivariate Gaussian given by,
VT = &7, Yvhfe.rei: = [¢1,...,6m]" andé,, € RY i§ a " exp(— 17 (AD) 1)
random vector with i.i.d. components. Thus, the reconstructigh of p(w]A) = (2m)N2[AZ/2 ®)

from g reduces to estimating the sparse weight veator

Most of the recent literature on CS [11, 12] has concentrated oWhere| - | denotes the determinant of a matrix. From (3), we obtain
solving constrained-based optimization problems for sparse signéihe following simple expression for the maximum likelihood (ML)
representation. For instance, in the case of CS measurements cgtimate of the variabld,

rupted by add_iti\_/e_noi_ss“with unknown variancei, g= P+, /1(13) _ (u‘;’TE‘lﬁ) /N . 4)
the/;-norm minimization approach seeks a sparse vegtoy solv- _ _ _ _
ing the following optimization problem, Assuming that the noise varlanaé}, the value ofA and the covari-

ance matrix3 have been estimated, given the CS measurenggnts
and the matrix®, the posterior ofd is given by the Bayes' rule,

wheree is the noise level|[i7]l2 < ¢€). The main approaches for (G1, 02)p(F] A, =)

the solution of such optimization problems include linear program- p(0|F, A, Z, g’i) _PY L1 p 5 ’ , (5)

ming [13] and greedy algorithms [14], resulting irpaint estimate p(glA, %, 07)

of the weight vectorr. which is a multivariate Gaussian distribution whose mgamd co-
On the other hand, when working in a probabilistic framework, varianceP are given by,

then given the prior belief thal is sparse in basi®& and the set of

@ = argmin|d , st. [|§— i <ce, @
w

— -2 T >

CS measurements the objective is to formulate posterior prob- fi = 0,/P®g, (6)
ability distribution for «. This improves the accuracy over a point P = (5,°®"®+M)", @
estimate and provides confidence intervals (error bars) in the approx-
imation of f, which can be used to guide the optimal design of addiwhereM = diag((Ao?)~",...,(Ao%)~"). The estimated vec-
tional CS measurements with the goal of reducing the uncertainty itPr @ is equal to the most probable value of the above multivariate
reconstructingf?_ Gaussian model, that ig] = ﬁ

Under the common assumption of a zero-mean Gaussian noise, 1 Ne critical advantage offered by a Bayesian CS method, when
we obtain the following Gaussian likelihood model, compared with the constrained-based optimization approaches in the

1 processing of medical images is that it fits better the true heavy-tailed
p(Gl@, 07) = (2mon) M/? - exp(— s ||g — @) . (2) statistics of the sparse vectat The use of the GSM model could
203 enhance the (sparse) representation performance, since it provides

Assuming tha is known, the quantities to be estimated, given thean additional degree of freedom through the scale paramietend
CS measurements are the sparse weight vectarand the noise  thus it results in a more accurate modeling of the true sparsity of the
variances;. This is equivalent to seeking a full posterior density original image in the (wavelet) transform domain.
function for« ando. The sparse representation of the wavelet coefficient vetter
~Inthis probabilistic framework, the assumption thats sparse  duces to estimating the model parametérsS, o2. The unknown
is formalized by modeling its distribution using a sparsnty-enforungparametersg’ {2}V, can be estimated iteratively by maximizing

prior. A common choice of this prior is the Laplace density [15]. the following marginal log-likelihood function with respect to them:
However, the use of a Laplace prior density raised the problem that

ian i i i L(oy, {0 Y1) = log[p(dlA, o, {07 *}ily)]
the Bayesian inference may not be performed in closed form, since ny Wi Ji=1 EIPLGIA, Tns \Ti yi=1
the Laplace prior is not conjugatto the Gaussian likelihood model. _ 1 M log(2 1 Aol 8
The treatment of the CS measuremegitbtom a Bayesian view- 2[ 0g(2m) + log(C[) + g g} ’ (®)

point, while overcoming the problem of conjugateness, was intro- 5
duced in [10] by replacing the Laplace prior@fwith a hierarchical whereC = %I + ®X7'®7. As it can be seen, the proposed
model, which had similar properties as the Laplace but allowed cormodel is a scaled version of the previous hierarchical model by a

venient conjugate-exponential analysis [16]. factor of 1/A. This factor is important, since it controls the heavy-
tailed behavior of the diagonal elementsMf and consequently of
2.1. BCS sparse representation using GSM priors the covariance matri®, and thus the sparsity of the estimated vec-

In the present work. the sparse representatiaf sfalso performed torw = fi. A fastincremental algorithm is used for the addition and
p ' P P P deletion of candidate basis functions (columnsigfto monotoni-

In a Bayesian framework. However, in contrast to previous mEthE:allyincrease the marginal likelihood (8), by noting that the marginal

Lin probability theory, a family of prior probability distributionss) is log-likelihood can be decomposed in two terms,
said to be conjugate to a family of likelihood functigmg|s) if the resulting N N
posterior distributionp(s|z) is in the same family as(s). Lok, {o72}l)) = Llon, {07 Hly i) +1(05%),  (9)




Algorithm 1 Estimation of a sparse vectarvia BCS-GSM noisy versions of them by adding zero-mean Gaussian noise result-
Input: @, g, c ~ 107° ing in SNR= 7.5, 15 dB.

- In the subsequent experiments we apply several CS algorithms
using a portion of the detail coefficients. In particulaiVdetai is the
number of the detail coefficients we evaluate the performance using a
subset of size- Ngetai With ¢ € {0.3,0.4,0.5,0.65} (or equivalently
by employing30%, 40%, 50% and65% of the detail coefficients).
The proposed BCS-GSM method is compared with the following
> (all other{o; *};z;, are setto  CS techniques: 1) standard BCS, 2) BP, 3) StOMP (combined with
7 a CFAR thresholding scheme), 4)-norm minimization using the
primal-dual interior point method (L1LEQ-PD) and 5) the linear re-
construction, which is simply the inverse 2-D DWT and gives the
optimal reconstructich

The CS measuremengsare acquired by applying measurement
matrices® with their columns being drawn randomly from the unit
sphere on the wavelet coefficients vectér The quality of the re-
constructed image (of sizB x Q) is measured via the Peak Signal-
to-Noise Ratio (PSNR), which is defined as follows (in dB):

Output: o = i, P, 0?7, 2 {the set of significant basis functions
Initialize: -
a,"; = c- Var(g), select basis vecta. ;, (i1-th column of®) s.t.
: [EXs
N a6 %) o2
[
(187, 12/18..:,12) —o
infinity), 2 = {i1}
1: ComputeP (Eq. (7)), (Eq. (6)) (initially scalars) and estimate
A from Eq.(4)
2: repeat
3 fori=1,...,Ndo
4: Computet; = ¢7 — s;
5: if & > 0ando; ? < oo then
6.
7
8

seto; ? =
1

re-estimater; >
else if¢; > 0 ando; % = oo then

addi-th basis in the model® — % U {i}) and < max{I} )
updates; 2 PSNR= 20log,, - ,
9: elseif¢; <0ando; ? < oo then \/% S X2 (P g) — 1(p,q)?
10: deletei-th basis from the model® — £ \ {i}) (20)
and set; 2 = oo whereI and! denote the original and reconstructed image, respec-
11: end if tively, max{I} is the maximum pixel value of imageand(p, q)
12: UpdateP, i and A (in this order) is the pixel value at the positiofp, ¢). Due to space limitations, we
13: Updateo? = lg—®a|* S {card  Plotthe results for the images of the top row only. However, similar
N=card(#)+3 negg A~ on " Pan performance is achieved for the other three images.
denotes the cardinality of a get
14: UpdateD by performing the scalingl o2
15: end for CerebralAngio Cisternogram

16: until convergence

with the first term depending on all except for tieth variance,
while the second term depends only on th¢h variance. The it-
erative scheme for the estimation of the weight veefioproceeds
as shown by Algorithm 1, where the following notation is used:
si = ¢1,C-1¢.; andg; = ¢.,C_!g, whereC_; is C with the
contribution of thei-th basis vector ignored.

Several convergence criteria can be employed to terminate tt
execution of the algorithm, such as when the number of iteration
exceeds a predefined maximum or when the relative decrease of t
marginal log-likelihood function from one iteration to the next one
falls below a small positive threshold. In our implementation weFig. 1. Medical imagesi28 x 128) used for evaluation of the per-
adopt the second approach, since it results in an increased recdiormance of BCS-GSM.
struction performance, while the first one could be used to reduce

CoronaryAngio CTA

the computational cost. Fig. 2 shows the PSNRs between the reconstructed (noiseless
and noisy) images and the corresponding original (noiseless) image,
3. EXPERIMENTAL RESULTS for the BCS-GSM, as well as for the other five reconstruction ap-

proaches, as a function of the number of measurements for the two
plying it on a set of six medical images of siz88 x 128, which SNR valges. First, we observe that for the selected images the re-
are shown in Figure 1. Each image is sparsified in the 2-D pwcenstruction perfprmance of all methods decrease_s_as the SNR de-
domain by decomposing them i scales using the Daubechies’ creases, something that we expected. However, it is clear that the

“db 4” wavelet. The detail wavelet coefficients represent the highproposed BCS-GSM method achieves practically the same PSNR

frequency content of a given image and they are characterized by"‘é\ith the selected CS methods and the optimal linear reconstruction.

highly sparse behavior, whereas the approximation coefficients cof” lpartlc;llar, (tjhe.dlffﬁrenc.e "|1 PSNR Wlthht.l|1eillr.1ear r?.cqtr)llstr.uctrl]on
respond to a coarse representation of it. Thus, the CS aIgorithM§ ess _t ani dB in t e.QO'Se ﬁss_ case, Wd'e It E neg; igible in the
are applied on the detail coefficients only and the reconstruction diV0 NOiSy cases. Besides, the increased number of measurements

the original image is performed by adding the approximation coef- 2gqy the implementation of the other CS methods we used the code
ficients to the reconstructed image obtained from the detail coeffincluded in the SparseLab package that is available onlinettat//

cients. Except for the original (noiseless) images we generate twsparselab.stanford.edu/

In this section, we evaluate the performance of BCS-GSM by ap
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Fig. 2. PSNRs for “Aneu3”, “CerebralAngio” and “Cisternogram” Fig. 3. CS ratios for “Aneu3”, “CerebralAngio” and “Cisternogram”

as a function of\/ and for SNR= 7.5, 15 dB.

in the selected rang#/ € [1900, 4200] does not affect the recon-  [4]
struction PSNR as much as one would expect. A justification for
this behavior is that all of the selected images consist of lines and
edges spread over a relatively homogeneous background resultinds]
in highly sparse coefficient vector. Thus, a small number of mea-
surements is adequate in capturing the sparsity, while the addition of6]
more measurements above a threshold improves the reconstruction
quality only slightly. 71
The increased ability of BCS-GSM to provide a highly sparse

representation in the case of medical images is highlighted in Fig. 3[8]
depicting the corresponding CS ratio values, which we define as the
ratio of the number of measurement$ over the number of non-
zero components afj (sparsity) returned the algorithm. The larger [9]
the CS ratio value, the higher the sparsity for a fixed valui/ofOb-
viously, BCS-GSM outperforms all the other CS methods, increas-
ing the sparsity of the representation by as muchasmes as the
number of measurements increases. In addition, this significantlj10]
improved performance is robust even in the low-SNR regime.

4. CONCLUSIONS AND FUTURE WORK -
In this work, we described a probabilistic method for CS sparse relez]
resentation of medical images using a GSM, which models directly
the sparse coefficient vector with a heavy-tailed distribution that en-
forces its sparsity. The experimental results revealed a critical propfL3]
erty of the proposed BCS-GSM approach when compared with other
CS reconstruction methods. In particular, we showed that the BCS[14]
GSM implementation maintains comparable reconstruction perfor-
mance, while using much fewer basis functions and thus, resulting
in an increased sparsity. The subject of our ongoing research is to
apply the increased sparsity for classification and retrieval purposes
reducing the storage requirements and the computational cost.
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