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ABSTRACT 

Automated landmark detection may prove invaluable in the analysis of real-time three-dimensional (3D) 
echocardiograms. By detecting 3D anatomical landmark points, the standard anatomical views can be extracted 
automatically in apically acquired 3D ultrasound images of the left ventricle, for better standardization of visualization 
and objective diagnosis. Furthermore, the landmarks can serve as an initialization for other analysis methods, such as 
segmentation. The described algorithm applies landmark detection in perpendicular planes of the 3D dataset. The 
landmark detection exploits a large database of expert annotated images, using an extensive set of Haar features for fast 
classification. The detection is performed using two cascades of Adaboost classifiers in a coarse to fine scheme. The 
method is evaluated by measuring the distance of detected and manually indicated landmark points in 25 patients. The 
method can detect landmarks accurately in the four-chamber (apex: 7.9±7.1mm, septal mitral valve point: 5.6±2.7mm; 
lateral mitral valve point: 4.0±2.6mm) and two-chamber view (apex: 7.1±6.7mm, anterior mitral valve point: 
5.8±3.5mm, inferior mitral valve point: 4.5±3.1mm). The results compare well to those reported by others. 
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1. INTRODUCTION  
Real-time 3D echocardiography offers new possibilities in the analysis of cardiac function. The interpretation of the 
echocardiographic images, however, is critically dependent on the experience of the observer as well as the 
standardization of views. Variability in choice of anatomical views results, unfortunately, in high interobserver and 
interinstitution variability in the diagnosis. Additionally, quantitative analysis methods, like segmentation, often need a 
good initialization. As a result, a method that detects left ventricular landmark points (apex, mitral valve hinge points) in 
an automated way would be of great importance. 

Several methods for automated landmark detection have been proposed for echocardiographic images. For example, Van 
Stralen et al.1 describe a technique for detection of the left ventricular (LV) long axis and mitral valve plane in 3D 
ultrasound images. This is achieved through several consecutive steps. After taking 2D slices perpendicular to the 
acquisition axis over time, a circular Hough transform is applied to detect the centre of the endocardium border. In that 
way possible centres are detected for each slice, and through dynamic programming, a path through all slices 
approximates the left ventricular long axis. Further steps provide the final computation both of the axis and the mitral 
valve plane.  

The Fourier Mellin Transform (FMT) has also been proposed for localization of the left ventricle2. The main idea behind 
this approach is to build an appearance template of the object of interest, and to express both the template and the search 
image in a rotation and scale invariant representation using the FMT. This way, the estimation of rotation, scale and 
position converts into a cascade of linear shift detections, enabling a fast estimate of the object pose.  
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Recently, classification approaches have been proposed for automated object detection. Classification makes use of prior 
knowledge embedded in expert annotated databases. The objects are represented using many image features and detected 
by a classifier (e.g. support vector machine, linear discriminant analysis etc) trained from labeled examples. Georgescu et 
al.3 introduce a classification method, which they named database-guided paradigm, to detect structures of interest in 
medical images. A robust classifier is constructed using a boosted cascade of weak classifiers. Each weak classifier uses 
a feature from a large set of Haar features. A similar approach is used by Carneiro et al.4 for the detection and 
measurement of fetal structures in ultrasound images. 

Lu et al.5 presented a classification approach for the detection of standard view planes, similar to the one proposed in the 
current study. They use a cascade of three classifiers, which are trained based on boosting techniques. The first classifier 
uses Haar wavelet-like feature types and the next two use steerable features6.  

In this study, a classification based method was developed to detect the standard anatomical landmark points in two-
chamber (2C) and four-chamber (4C) view planes in a fully automated way. The method uses smaller databases than 
those that have been used to similar approaches5, since large databases of training data were not available, which is often 
the case for medical images. To make the classifier more robust, artificial variations are used. The small database 
available was also the reason to use 2D instead of 3D features, since the latter would require an enormous database to 
model the 3D LV adequately. Boosting techniques are used to train the classifier. In initial experiments, we saw that 
small tree classifiers performed better than weak classifiers consisting of a single feature, so we decided to use such 
classifiers in the boosting scheme. Similar to the procedures described by Nemes et al.7 and Leung et al.8 the method will 
be applied to single 3D images at end-diastole (ED). 

 

 
 

Figure 1. Manual iterative 3D landmark detection approach.   
a) After the apex and mitral valve markers are placed in an approximate 4C plane, the LAX is calculated,   
b) the perpendicular 2C approximation plane is taken and the LAX is adjusted,   
c) the perpendicular 4C approximation is used to adjust the LAX again,   
d) step b) and c) are repeated until the true LAX is found. 
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2. MATERIALS AND METHODS 
2.1 Manual scheme  

Previously, we proposed a manual method to find the anatomical views 2C and 4C, in which perpendicular 2D planes 
from a 3D data set were annotated iteratively7,8. By annotating the apex and mitral valve centers in perpendicular long-
axis (LAX) planes, the 3D LAX can be found easily (Figure 1).  

The LAX can be re-estimated in the updated views to converge to the LAX, which usually takes only 4-6 iterations. In 
this study we propose to replace the manual annotation in 2D cross-sections using the fully automated landmark 
detection. 

2.2 Landmark detection  

Instead of detecting the landmark points individually, we try to locate the region containing those landmarks. The region 
is defined by a box, in which the positions of these landmarks are fixed (Figure 2). To do this, we place boxes of 
different sizes and orientations at different positions of the image. For each box, we determine whether it contains these 
landmarks at fixed positions within the box using classifiers. 

We model the left ventricle using simple and easy to compute Haar wavelet-like features, that have been used in similar 
applications4 (Figure 3). The output value of each feature is the difference between the sum of the image pixels in the 
white section and the sum of image pixels in the black section. To compute these features efficiently, we used the 
algorithm of Viola and Jones9. The pixels of the resulted filtered image (Figure 4) are the features used to train the 
classifier. 

 

 
Figure 2. Annotated image of a 2-chamber view (left) with a rotated and skewed rectangle box, where the 

landmarks have fixed relative positions, within the box. The template box is shown on the right. 

 

 
Figure 3. Types of Haar features used by the classifiers. 
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(a)     (b) 

Figure 4. Example of (a) an image box and (b) its filtered result using the first Haar feature from fig. 3. 

 

For the calculation of these features in our ultrasound images, we had to deal with missing image information, in regions 
where the template exceeds the actual image boundaries. Georgescu et al.3 proposed a mask to exclude invalid pixel 
values. Apart from using that method, we explicitly exclude these pixels. By summing all training images from all 
patients, we use this summed image to know which regions were invalid for all our patients. We used this information to 
exclude the feature values of these regions from both our training and testing set (Figure 5). 

 

 

 

 

Figure 5. Map of features used by the third classifier after explicitly excluding invalid region values. Positions 
correspond to an image box as in fig. 4. The classifier focuses near the anatomical landmark locations (red circles). 
Colors denote the number of features used at a certain position. 
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Figure 6. Template boxes. a) Template of first classifier, only LV center has fixed position. b) Template of second 

classifier, fixed positions for apex and mitral valve center. c) Template of third classifier, fixed positions for all 
anatomical landmark points. 

 

The method works in a coarse to fine approach with more pose parameters and finer steps, using a cascade of three 
classifiers. The first classifier detects the approximate center of the left ventricle (irrespective of size and rotation). The 
second one detects the apex and mitral valve center (so, approximate LV position, size and rotation, but not shear). The 
third classifier detects all three apex and mitral valve point positions (anterior/inferior in 2C and septal/lateral in 4C), i.e. 
the complete pose, with more precision. To train the three classifiers of the cascade, different positive and negative 
examples are generated from the annotated database, to match the three templates in Figure 6. From each patient, we can 
generate several positive examples, by applying controlled amounts of translation, rotation and shear to the ideal box. 
That way we model the natural variation of LV size and pose and we have the opportunity to use larger number of 
examples for the training phase, which is important for obtaining a robust classifier. 

 

 
 

Figure 7. Example of detected LV centers for the 2 chamber view by the first classifier. The true center is marked with 
a green circle and the hits with cyan asterisks. The inferior (magenta), anterior (yellow) and apex (cyan) markers 
are also indicated. 
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We train classifiers to distinguish between boxes with the landmarks at the correct positions (positive examples) and 
those with landmarks at the wrong places (negative examples). The classifiers are trained using Adaboost, a machine 
learning algorithm which combines smaller, weak classifiers into a robust, strong one. This is accomplished by 
iteratively selecting the best weak classifiers. After each iteration, training examples which are misclassified by the 
current strong classifier are upweighted, to allow the classifier to adapt more to these misclassified examples during the 
next iteration. Here, we use small tree classifiers, each using a small number of Haar features, as weak classifiers.  

The cascade is then used for detection. First a rectangular box is scanned over the 2D image. Each box is a first candidate 
for containing the center of the left ventricle. The first classifier will evaluate each box and determine the most probable 
“hits” (detected positives), as shown in Fig. 7. These will be used to generate new candidates to match the second 
template, by translating and rotating the region around the detected LV centers. After classifying them with the second 
classifier, the new “hits” will be used to give us new candidates for the third classifier. This time, the boxes will undergo 
finer translation, rotation, scale and shear, to create sub images to detect all landmark points (Figure 6). The third 
classifier is used to give us the final estimate of the landmark position, which is the average of all given “hits” for each 
patient. To limit our “hits” we pruned the classified candidates from stage to stage, as we progress through the cascade to 
exclude spatial outliers, as a post-processing step.  

2.3 Experimental setup  

The evaluation is done in three stages: training the classifiers, tuning them to a desired operating point by ROC analysis 
(tradeoff between correctly classified sub images and misclassified ones) and finally, testing the algorithm. 85 manually 
annotated 3D patient datasets were used in the project. 60 patients are used to train the classifiers. The remaining 25 are 
split into batches of five for cross-validation: each time, 20 are used for the ROC analysis and five for evaluation, by 
measuring the detection error in the original 3D set.  

The basic idea of ROC analysis is very simple: for a given trained classifier and a labeled test set, define a set of possible 
operating points and estimate different type of classifier errors at these points. For training our classifier we used prTools 
(http://www.prtools.org/), a toolbox developed in Matlab, while the ROC analysis was done using PRSD Studio 
(http://prsdstudio.com) from PR Sys Design, which runs in Matlab (version R2007b, MathWorks Inc).  

 

 

 

 

Figure 8. ROC curves of the second classifier in the 2C (left) and 4C view (right). 
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3. RESULTS 
We present the detection results in the four and two chamber views. A first impression of the classifiers’ performance 
can be given from the ROC curves (Figure 8). The curves indicate that our classifiers perform quite well. The detection 
accuracy was evaluated by measuring point-to-point errors, meaning the distance between the manually indicated 
position of the sought point and the one detected by the classifier. The detection errors are summarized in Table 1. 

 

Table 1. Results on 2C and 4C view. * denotes statistically significant (paired t-test p<0.05) with respect to the previous 
classifier. † denotes statistically insignificant difference with respect to the previous classifier. 

 Average point errors  
2C (mm) 

Average point errors  
4C (mm) 

Step 1 Image center 6.5±2.5 7.9±4.1 
Step 2 Image center 5.8±2.4* 7.6±4.8* 
 Apex 7.2±7.0 8.0±5.0 
 Mitral valve center 5.6±5.2 8.2±4.7 
Step 3 Apex 7.1±6.7† 7.9±7.1† 
 Mitral valve center 5.2±2.8† 4.8±2.3* 
 Anterior/ Septal 5.8±3.5 5.6±2.7 
 Inferior/ Lateral 4.5±3.1 4.0±2.6 

 
 

4. DISCUSSION 
We decided to follow a multilevel approach, in which the global location of the left ventricle is found first, and then 
rotation and scaling are found and further refined, to locate the landmark positions. The method produces a reasonably 
accurate estimation for the locations of the points. We can detect the points in both the 2C and 4C views (Table 1). The 
multilevel approach is justified, since the results are improving from stage to stage. The results improved significantly 
from Step 1 to Step 2, while from Step 2 to Step 3, although not always significant, there is still some improvement. 

Some approaches which also identify the sought landmark points in addition to the long axis or the apical views’ 
orientation angles have been published (Table 2). As already mentioned, Van Stralen’s method1 uses a combination of 
the circular Hough transform and dynamic programming. We used this approach to detect the apex and mitral valve 
center in exactly the same database. This approach does not detect rotation, resulting in larger errors than our method 
(Table 2).  

 

Table 2. Comparisons with existing methods. 

Point errors (av±SD) Apex Mitral valve center 

Proposed 7.5±3.3mm 5.0±2.5mm 

Orderud10 8.4±3.5mm 3.6±1.8mm 

Lu5 4.5±3.5mm 3.6±3.1mm 

Leung8 7.6±4.8mm 4.5±2.9mm 

Van Stralen1 14.7±8.6mm 8.4±5.7mm 

Interobserver8 7.1±2.9mm 3.8±1.3mm 

Intraobserver8 5.2±2.0mm 3.3±1.5mm 
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Lu’s method5 results in smaller errors than our method does, probably due to better performance of the steerable features 
or the structure of the cascade. We have to note though, that their database was much larger (326 patients from whom 
244 were used for training). Compared to the results given by Orderud et al.10 we find lower errors for the apex and 
mitral valve center. Leung et al.8 outperform our method, but we have to take into consideration that they aimed at 
registering markers in stress images, given the markers in the rest image, instead of detecting the standard views, which 
might have influenced the results. Finally, Table 2 shows comparisons with the interobserver and intraobserver variation. 
The fact that our errors are close to those provided by the interobserver and intraobserver variability is very promising, 
since these are the ground truth of manual annotation. 

5. CONCLUSIONS 
We showed that using our proposed approach, the anatomical landmark points can be detected accurately. Our errors 
were comparable to the interobserver and intraobserver variability of the manually indicated landmarks (following the 
same protocol as in this study), meaning that our approach is really promising. Additionally, the errors rates show that 
the original limitation of using a small database was surpassed by using artificial variations. The algorithm proved to be 
accurate and robust enough in both planes, so it could be combined with the already existing manual technique to extract 
the views and result in a fully automated method of detecting anatomical landmarks of the left ventricle. 
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