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ABSTRACT
We propose a fast algorithm for the detection of cells in flu-

orescence images. The algorithm, which estimates the number
of cells and their respective centers and radii, relies on the fast
computation of intensity-based correlations between the cells and
a near-isotropic Mexican-hat-like detector. The attractive features
of our algorithm are its speed and accuracy. The former attribute is
derived from the fact that we can compute correlations between a
cell and detectors of various sizes using O(1) operations; whereas,
it is our ability to continuously control the center and the radius
of the detector that results in a precise estimate of the position
and size of the cell. We provide experimental results on both
simulated and real data to demonstrate the speed and accuracy of
the algorithm.

Index Terms— Fluorescence microscopy; cell detection; box
spline; Mexican-hat; LoG; scalable detector.

1. INTRODUCTION

THE segmentation of cells is often crucial for the quantitative
analysis of microscopic images. Operations such as the count-

ing of cells, study of their spatial organization, and the distribution
of fluorescence signals on the cell nuclei require a precise delin-
eation of the cell boundaries.

In fluorescence imaging, the cells (or the cell nuclei) appear
as bright blobs on a dark background. The difficulty, however, is
that the images are often corrupted with large amounts of noise
owing to the limited laser excitation used to avoid excess pho-
tobleaching [1]. Added to this, there is typically the problem
of uneven illumination, where the intensities within the cell are
significantly varying, making it difficult to segment the cell us-
ing a single global threshold. Adaptive thresholding methods,
often combined with region growing, have commonly been used
to circumvent this problem [2, 3]. More recently, accurate and
sophisticated segmentation algorithms based on level-sets and
graph-cuts have been proposed for this task [4, 5]. The present
limitations of such methods are (i) the difficulty to automate them,
and (ii) their slow-to-moderate speed of computation. For certain
applications, especially those related to high-throughput screening,
it is absolutely necessary to adopt techniques that are fast and
fully automated. Simple but efficient detection methods have been
proposed to suit these requirements [6, 7].

In this paper, we propose a simple and fast linear filtering
based algorithm for the detection of round cells in fluorescence
images. The core of our detection paradigm, the fast computation
of correlations between the cell and the scalable Mexican-hat de-
tector, is based on an algorithm proposed in [8] for space-variant
smoothing of images using certain Gaussian-like box splines, the
radially-uniform box splines. In the present context, we are inter-
ested in the quasi-isotropic variant of the radially-uniform box
splines which resemble the isotropic Gaussians. Akin to the popu-
lar means of approximating the Mexican-hat using the difference
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of Gaussians, we realize Mexican-hat-like detectors using the dif-
ference of two such near-isotropic box splines. These are then
used as templates for detecting round cells/nuclei in fluorescence
images, and for estimating their positions and radii.

2. SCALABLE MEXICAN-HAT DETECTOR

To introduce the notations, we recall the construction of the
isotropic variants of the radially-uniform box splines introduced
in [8, 9]. The detector construction is discussed next.

2.1. Gaussian-like box spline

The particular quasi-isotropic box splines that we are interested in
are realized through the convolution of four “uniformly-rotated”
box functions of identical width. More specifically, let Boxr(x) =
1/r for |x | ≤ r/2, and equals 0 otherwise, be the (normalized) one-
dimensional box function of width r, and let uθ = (cosθ , sinθ)
and uθ⊥ = (− sinθ , cosθ) be the unit vectors along direction θ
and perpendicular to it. Then the bivariate box spline βr(x ) under
consideration is specified by

βr(x ) = (ϕr,0 ∗ϕr,π/4 ∗ϕr,π/2 ∗ϕr,3π/4)(x ),

where ϕr,θ (x ) = Boxr(uT
θ

x )δ(uT
θ⊥ x ) is obtained by rotating the

tensor Boxr(x1)δ(x2) through an angle θ . This, in fact, can be
seen as an improvement over the standard separable construction

φr(x ) = (ϕr,0 ∗ϕr,0 ∗ϕr,π/2 ∗ϕr,π/2)(x )

which uses box functions solely along the horizontal and the
vertical directions. Although βr(x ) and φr(x ) have the same
order–a total of four box functions in each case–the “rounding-
effect” of the box functions placed along the diagonals tends to
make the former more isotropic. Indeed, judging by the shape
of the support and the distribution of the intensity of βr(x ) and
φr(x ), as shown in figure 1, βr(x ) clearly looks more Gaussian-
like than φr(x ). A quantitative justification of this fact can be
obtained through the computation of the following isotropy index


 =
1

2π|| f ||2
∫ 2π

0

〈Rθ f , f 〉 dθ ,

which measures the rotational symmetry of a non-negative func-
tion f (x ) by correlating it with its rotated versions (Rθ is the
rotation operator). The isotropy index of φr(x ) was found to be
98.8%, while a higher index of 99.7% was recorded for βr(x ).

2.2. Detector specification and characteristics

The Laplacian-of-a-Gaussian (LoG), also known as the Mexican-
hat, is widely used for detecting radial singularities in images.
In practice, the LoG is often approximated by the Difference-
of-Gaussians (DoG), which is easier to implement. In our case,
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Fig. 1. Intensity distributions of (a) βr(x ) and (b) φr(x ); (c) and
(d): Respective scan profiles along π/8.

we approximate the Mexican-hat detector as the difference of a
narrow and a wide box spline:

ψr(x ) = βr(x )− β�2r(x ), (1)

where r > 0 is a real-valued parameter that controls the scale (or
radius) of the detector. Figure 2 shows the intensity distribution of
ψr(x ) and the profile along a scan-line passing through the origin.

We note that the total mass of βr(x ) is independent of r, so
that ∫

ψr(x )dx = 0

In particular, while the detector tends to suppress uniform-
intensity regions, a large response is generated by singularities
along the radial direction. To make this precise, we consider the
ideal blob function

bR(x ; xc) =
�

1 for 0≤ ‖x − xc‖≤ R,
0 otherwise,

(2)

with centre xc and radius R. The radial singularity (jump) in this
case is along the circle ‖x − xc‖= R. The corresponding detector
response

Mr(xc) =

∫
bR(x ; xc)ψr(x − xc)dx

turns out to be a smooth unimodal function with a peak at r = γR,
where γ = 1.33 is a calibration factor. The unimodal nature is
due to the cancellation that takes place between the constituent
box splines when r ≤ γR; the cancellation keeps increasing as
r goes from γR to zero resulting in the progressive drop in the
response. On the other hand, the decay of Mr(xc) for r > γR,
when no cancellation occurs, comes as a consequence of the 1/r4

normalization of the box spline.
Though (2) is a rather idealized model for representing the

cell/nucleus in real images, the responses obtained turn out to be
very similar. For instance, figure 3 shows the response obtained
for one of the cells in the fluorescence image shown in figure 5.

(a) (b)

Fig. 2. (a) Intensity distribution of the Mexican-hat-like detector
ψr(x ); (b) Scan profile along π/8.

2.3. Computational aspects

Before presenting the algorithm, we elaborate on the computation
of the quantity

Mr(x ) =

∫
f (y)ψr(y − x )d y (3)

for a given discrete image f (x ) =
∑

n∈Z2 f [n]δ(x − n). A fast
and efficient evaluation of (3) will turn out to be the workhorse of
our cell detection algorithm, which requires the rapid evaluation
of Mr(x ) at several image positions and at different radii per
position.

From (1), it is clear that Mr(x ) can be expressed as the differ-
ence of two box-spline averages, namely as

Mr(x ) = Ar(x )− A�2r(x )

where

Ar(x ) =

∫
f (y)βr(y − x )d y .

It was shown in [8] that, by taking advantage of the quasi-
separable structure of βr(x ), one could exactly determine Ar(x )
using the following fast algorithm.

(1) (Pre-integration) We pre-integrate the discrete image
f [n] = f [n1,n2] along the four cardinal directions using running-
sums, which is efficiently implemented using the following
recursion:

(i) Horizontal, R0[n1,n2] =
∑∞

k=0 f [n1 − k,n2].
(ii) First-diagonal, Rπ/4[n1,n2] =

�
2
∑∞

k=0 R0[n1 − k,n2 − k].
(iii) Vertical, Rπ/2[n1,n2] =

∑∞
k=0 Rπ/4[n1,n2 − k].

(iv) Second-diagonal, F[n1,n2] =
�

2
∑∞

k=0 Rπ/2[n1 + k,n2 − k].

(2) (Finite-difference) For a given position x and radius r, we
compute Ar(x ) by taking a finite-difference of a continuous form
of the pre-integrated image. In particular, we use the formula

Ar(x ) =
15∑
i=0

wiFint

�
x +τ− x i
�

where the notations are as follows: wi = (−1)q1 · · · (−1)q4(1/r4)
and x i = r(q1u0 + q2uπ/2 + q3u3π/4 + q4uπ/4) are the weights
and positions of the FD mesh, the tuple (q4,q3,q2,q1), running
from (0,0,0,0) to (1,1,1,1), is the binary representation of the
indices 0 ≤ i ≤ 15; τ = (τ1,τ2) where τ1 = (r − 1)/2 and
τ2 = (

�
2r + r − 3)/2; and

Fint(x ) =
∑

F[n]βZP(x − n)
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Fig. 3. A typical detector characteristic for one of the cells in Fig.
5. The solid curve shows the variation of the detector response
Mr(xc) with radius r, where xc is the exact cell center. The dots
on this curve correspond to the successive estimates of the optimal
point γR� obtained from the golden section search.

is the interpolation of F[n] using the box spline βZP(x ). The
box spline 2βZP(x ) is popularly known as the Zwart-Powell (ZP)
element in box spline literature [10]. The samples Fint(x +τ− x i)
are rapidly evaluated using a method that takes advantage of the
finite support and the piecewise-quadratic structure of βZP(x ).

Once the pre-integration is over, Mr(x ) can thus be computed
using a single FD mesh obtained by combining the two FD meshes
of radii r and

�
2r in step 2. The crucial aspect of the above

computation is that number of operations (modulo the mild in-
terpolations) required in step 2 is independent of r, so that the
cost of computing Mr(x ) does not vary with the scale of the de-
tector. This O(1) complexity is clearly a significant improvement
over a naive implementation of (3) involving the discretization
of the Mexican-hat and the integral, which would require O(r2)
computations.

3. FAST DETECTION OF CELLS

We model the image f (x ) as the superposition of circular blobs
bRi (x ; x i) of unknown intensities αi , along with background noise
n(x ):

f (x ) =
N∑
i=1

αi bRi (x ; x i) + n(x ). (4)

We consider a more realistic model of the blobs bRi (x ; x i) than the
one in (2), whereby we do assume each cell to be localized within
a disk of radius Ri , but we do not assume the blobs to have the
same height or uniform intensity distributions.

The proposed algorithm estimates (without a priori knowl-
edge) the number of cells (N), the centre (xi) and the radius
(Ri) of each cell. The only assumption used is that the radii of
the cells are bounded, that is, Rmin ≤ Ri ≤ Rmax, where Rmin and
Rmax are provided as user-inputs. Our approach involves the
joint-estimation of the centers and the radii, whereby we first
sample the values of Mr(x ) at discrete image positions and radii
to obtain a coarse-to-fine estimate of the center x i , and then
proceed to derive a fine estimate of R by the optimizing |Mr(x i)|.
The main steps of the algorithm are as follows:

(1) Coarse estimation of the centers, rejection of background
points: To obtain a coarse estimate of the centers by restricting
the potential cell centers, aka the candidate points, to a lattice of
resolution �1.8Rmin� × �1.8Rmin�. Let us denote these candidate
points by x̂1, . . . , x̂P ; in general, P >> N but is small compared to
the size of the image. The particular choice of resolution ensures
that at least one lattice point intersects every cell, the smallest
cells of interest in particular.

At every x̂ i , we compute Mr(x̂ i) at rk = Rmin+k(Rmax−Rmin)/4,
for k = 1,2, and 3, and set Mi =maxk |Mrk (x̂ i)|. We then remove

Fig. 4. Detection result on simulated data. Row 1: Blobs of differ-
ent size; Row 2: Blobs of different intensities; Row 3: Identical
blobs corrupted with different levels of additive Gaussian noise;
Row 4: Identical blobs corrupted with different levels of speckle
noise; and Row 5: Cluster of identical blobs with varying margin
of separation.

those x̂ i (typically the background pixels) from the list of candi-
dates where Mi is smaller than a specific threshold ε, and sort the
remaining points as x̂1, . . . , x̂K (K << P) using the criterion that
x̂ j comes before x̂k if and only if Mj ≥ Mk. Those x̂ i that are close
to the actual centers x i tend to generate larger responses than
those that are further off; the above ordering places such points in
the foremost part of the candidate list.

(2) Fine estimation of the center and the radius: We set N = 0
and i = 1. We visit the foremost candidate point x̂1, place an
appropriate window W around it (at original resolution), and
similar to the coarse estimation phase, we compute the maximum
response M(ξ) =maxk |Mrk (ξ)| at every ξ ∈W . We use the result
of this fine search to select the centre x i as the point corresponding
to the local maxima, that is,

x i = argmax
ξ∈W M(ξ).

Having estimated the centre, we use the unimodal characteristics
of the detector (see Fig. 3) and the hypothesis that Rmin ≤ Ri ≤
Rmax to estimate the radius as

Ri = γ
−1 argmax
�
|Mr(x i)| : γRmin < r < γRmax

	
.

We perform this optimization using the golden section search, which
is an efficient algorithm for finding the extremum of a unimodal
function where one localizes the extremum by successively shrink-
ing the size of the interval within which this is known to exist.

This gives us the i-th cell with centre x i and radius Ri , and we
increment N to N + 1. We then proceed to remove the candidate
points x̂k belonging to the region of the detected cell, that is,
the region {x : ‖x − x i‖≤ Ri}. We then set K = K ′, where K ′
is the number of retained candidate points, and form the new
candidate list x̂1, . . . , x̂K . We increment i to i + 1 and keep repeat
the above process, namely the estimation of the centre and radius
of the (i+ 1)-th cell, and the crucial speed-up step involving the
truncation of the candidate list.

(3) Convergence: The iteration is terminated when either (i)
the list of candidate points is exhausted, or (ii) the maximum
projection goes below ε. The latter typically occurs when all the
bright cells have been detected, leaving behind the weak-intensity
cells and the background pixels.
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4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm, we simu-
lated a single 800×400 image (cf. Fig. 4) using different variations
of the cell model in (4). The idea was to study the effect of the fol-
lowing on the performance of the algorithm: (i) the size and inten-
sity of the blobs (rows 1 and 2), (ii) the presence of ambient noise
(rows 3 and 4), and (iii) the separation between the cells (row 5).
The SNRs (dB) of the images in row 3 (Gaussian noise) and row
4 (speckle noise) were ∞, 37.5,31.5,27.8,25.4,23.4,21.8,20.6,
and +∞, 40.1, 37.2, 35.8,34.6, 33.7,33.3, 32.5, respectively.

The algorithm was implemented in JAVA on a Macintosh 2.8
GHz Intel dual-core system. We set Rmin = 3,Rmax = 20, and
W = 3Rmin. The execution time was about 0.5 seconds, and the
detected blobs are shown in Fig. 4 using red circles. A near-exact
estimate of the positions and radii was obtained for the blobs in
the first four rows; the error in localization was within 1 pixel,
and that for the radius was within 1%. There were however two
false detections in presence of noise, the algorithm failed to detect
the smallest blob in row 1and the overlapping blobs in row 5; the
rest of the contiguous blobs in this row 5 were detected as a single
object.

Figure 5 shows the results of our detection algorithm applied
to real fluorescence images. The top figure shows a NIH3T3
cell line (mammalian cells for circadian cycle analysis) of size
512× 512, which stably expressed the nuclear fluorescent protein
under circadian Reverba promoter regulation. The second fluores-
cence image (cropped to 512× 312 pixels) was obtained from an
experiment on the migration and proliferation of stem cells. We
used Rmin = 3,Rmax = 32 and W = 3Rmin in either case. Most of
the bright blobs were detected in both the images, including the
slightly elongated cells in the second image. The very faint nuclei
in the first image and the tiny blobs in the second image were
not detected. The average execution time for the NIH3T3 and the
stem cell image was 0.7 and 0.4 seconds respectively.

5. CONCLUSION

We presented an algorithm for the detection of round cells in fluo-
rescence images using a Mexican-hat-like detector, which offers a
nice trade-off between the quality of approximation and the cost
of computation. The attractive features of our algorithm are (i)
the use of real-valued scale to continuously control the size of the
detector, which allowed us to obtain a very precise estimate of
the position and the size; and (ii) the fast computation of the re-
sponse using O(1) operations. Higher computational costs would
be involved to achieve similar results using pre-computed filters.
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