
A DETECTION-BASED FRAMEWORK FOR THE ANALYSIS OF
RECYCLING IN TIRF MICROSCOPY

A. Chessel3,4, B. Cinquin4,5, S. Bardin4, J. Boulanger3,6, J. Salamero3,4, C. Kervrann1,2

(1) INRIA Centre Rennes - Bretagne Atlantique, F-35042 Rennes

(2) INRA, UR341 Math́ematiques et Informatique Appliquées, F-78352 Jouy-en-Josas

(3) “Cell and Tissue Imaging Facility” - IBISA, Institut Curie, F-75248 Paris

(4) UMR 144 CNRS - Institut Curie, F-75248 Paris

(5) Soleil Synchrotron, F-91192 Gif-sur-Yvette

(6) RICAM, A-4040 Linz, Austria

ABSTRACT

Endocytosis/recycling and exocytosis are mechanisms conserved
through evolution allowing cells to communicate with their exter-
nal medium. In order to study these dynamic processes, the present
work proposes a patch-based method for detecting recycling or ex-
ocytotic events at the Plasma membrane in fast TIRF microscopy
combined with the computation of normalized temporal represen-
tations of those events. Evaluation, performed on TIRF sequences
showing Transferrin receptor (TfR) recycling, validates a high de-
tection rate fully compatible with an automatic data extraction and
analysis of the plasma membrane recycling process.

Index Terms— patch-based, event detection, TIRFM, TfR, en-
docytosis/recycling

1. INTRODUCTION

Total internal reflection fluorescence microscopy (TIRFM) allows
for the imaging of a very thin layer near the cell surface, at about
100 or 200 nm depth from a glass cell support. The dynamic study
of events happening between the cell and the external medium, seen
as sudden changes at the plasma membrane, is then possible. In par-
ticular, endocytosis/recycling pathways are among the mechanisms
that allow communication of the cell with the external medium.

In this work, our focus is the systematic study of the recycling
of fluorescent trans-membrane proteins. The recycling of an indi-
vidual vesicle observed in TIRFM then typically corresponds to a
sudden appearance as it docks to the plasma membrane. It is usually
followed by a more or less slower decrease in fluorescence intensity
as the targeted molecule vanishes in the medium, in the membrane
plane or for peripheral molecules, when it dissociates from the vesi-
cles.

Fast TIRF microscopy shows that as many as hundreds of such
events may occur every minute at different locations within a sin-
gle cell. Moreover, it is almost impossible at a glance to assess the
degree of temporal and spatial homogeneity of these events. If one
wishes to study multiple conditions or different molecular behaviors
at the single cell level, yet overcoming the basic limitation of pure
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qualitative or manual approaches, automatic statistical analysis of
heavy image series is required.

To this aim, the framework proposed here includes two steps.
First a new patch-based change detection method is proposed to
extract all the individual events from a TIRFM sequence; they are
looked for as suddenly appearing bright spots by comparing pairs
of images. Once detected, the recycling vesicle is supposed to be
immobile and the second step is the computation, for each detected
event, of a normalized temporal profile that will allow future statis-
tical studies and comparison.

The paper is organised as followed. Section 2 presents the bi-
ological model and the experimental setup used to obtain the raw
data. In Section 3, the detection method is described and quan-
titatively validated with respect to ground truths. Finally, Section
4 describes the proposed normalized representation applied to each
detected temporal signal.

2. BIOLOGICAL MODEL, EXPERIMENTAL SETUP AND
IMAGE ACQUISITION

While eukaryotic cells need to insure their integrity, they also have
to communicate with their external medium. From yeast to human
cells, mechanisms have been conserved through evolution that guar-
antee secretion, capture of diverse elements from the environment
as well as recapture and shuttling of cellular receptors that allow se-
lectivity of internalized molecules. Transferrin receptor is a hallmark
of constitutively recycling transmembrane receptors [1, 2] whose ex-
pression and function is directly linked to cell division and accurate
iron metabolism at the cellular level, through endocytosis and pro-
cessing of extracellular iron charged transferrin [3]. As a live cell
model to study this well known reporter molecule, chimeras have
been engineered between TfR and fluorescent proteins for their in-
troduction and expression in different cell lines.

To get deeper insights in the dynamics of proteins, such as TfR,
recycling from intracellular membrane pools to the plasma mem-
brane, relatively new optical techniques have been thoroughly used
over the last decades. Total Internal Reflexion Fluorescence [4] mi-
croscopy based on the properties of evanescent waves propagation
at the interface between two media with sufficiently different refrac-
tive indexes, is certainly the method of choice. This widely used ap-
proach demonstrated that transient fluorescence concentrations can
occur close to or at the plasma membrane, suggesting that they may
correspond to membrane sites specialized in endocytosis or exocy-
tosis [5]. Among diverse molecular behaviors reported by previous
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Fig. 1. Change detection in an image pair in TIRFM.

microscopy studies on this molecular model, plasma membrane con-
centration of fluorescently tagged proteins give rise to sudden spot
appearance and/or disappearance.

By allowing the visualization of a single plane near the plasma
membrane within a 100 nm narrow range of resolution in the Z axis,
TIRFM permits to detect and decipher the progressive molecular
steps corresponding to the docking of fluorescently labeled moving
vesicles when they reach the plasma membrane, their fusion with this
latter membrane and the biophysical property of diffusion, redistri-
bution or endocytosis of the transmembrane proteins thus delivered
at the cell surface.

For the experiments, M10 cells are transiently transfected with
a plasmid encoding for the TfR fused to the PhLuorin [6]. Cross-
bow shaped micropattern constraining the cell are used; they allow
for more stable experiment, from both biological and image analysis
point of view. TIRFM sequences are acquired on a Nikon TE2000
inverted microscope equiped with a TIRF arm. We use a high aper-
ture 100x TIRF objectif (NA=1.49). Image sequences were exclu-
sively generated in stream mode of acquisiton, exposure time per
frame is 100 ms for a 1 minute total duration of imaging (about 600
frames per series).

3. MULTISCALE EVENT DETECTION

In this section we propose an event detection framework from an
image pair. This method will then be evaluated on the acquired TfR-
pHl sequences, each pair of images being tested successively.

3.1. Theory and algorithm

Consider a gray-scale image pairu = (u(x))x∈Ω andv = (v(x))x∈Ω

defined over a bounded domainΩ ⊂ R
2. In order to test robustly

the similarity betweenu andv at locationx, our idea is to predict a
patchu(x) of sizen in u from patches(v(xi))xi∈B(x) taken in the
(fixed size) semi-local neighbourhoodB(x) ⊆ Ω. In what follows,
N = |B(x)| will denote the number of elements observed at loca-
tionsxi’s in the second imagev and a vectorized image patch·(x)
is defined as a vector of pixel intensities ordered lexicographically
in the square patch.

We propose a two-step approach to detect pixels with signifi-
cant changes for a given patch size. The local decisions are fur-
thermore analyzed in a multiscale framework by considering several
patch sizes, mainly to detect unusual events in the whole image and
to reduce the number of false alarms. More formally, let us con-
sider a scorez(xi) = ‖u(x) − v(xi)‖

2 defined as theL2 distance
between the two patchesu(x) andv(xi),xi ∈ B(x). The score
is non-negative and the smaller the value of score is, the more the
similar patches are. For a given patch sizen, the two-step decision
mechanism is as follows:

1. For each pixelxi ∈ B(x), we compute a scorez(xi) and
we make a binary decisiond(xi) with respect to a spatially-varying
thresholdτ(x) : d(xi) = 1 if z(xi) ≥ τ(x) and 0 otherwise.

Let N be the fixed size of neighbourhood andL be the number of scales
(patch sizes).
◦ For l = 1 · · ·L, compute

1. τl(x) = max
“

sup
y∈B(x) ‖ul(x) − ul(y)‖2, τ0

”

.

2. SN,l(x) =
P

xi∈B(x) 1‖ul(x)−ul(xi)‖2≥τ(x).

◦ ComputeλN = e−N

|Ω|

PL
l=1

P

y∈Ω eSN,l(y).

◦ For x ∈ Ω, compute PFA(x) = 1 −
PkD(x)

k=0 (λN )k e−λN

k!
and make

the decision:MCD(u, v)(x) = 1 if PFA(x) ≤ ε/|Ω| and 0 otherwise.

Fig. 2. Change detection algorithm between imagesu andv.

2. We make a collective decision from individual decisions
{d(xi) : xi ∈ B(x)} at neighboring points [7, 8, 9, 10]. An in-
tuitive choice is to count the total number of positive decisions made
by individual pixels and denotedSN (x) =

P

xi∈B(x) d(xi). Given
SN (x), we declare that a change occurs at locationx (hypothe-
sis H1) if all the scores are higher thanτ(x) in the neighborhood
B(x) (maximum vote) and we select the hypothesisH0 otherwise:
D(x) = 1 if SN (x) = N andD(x) = 0 otherwise.

In this procedure, cooperation among neighbouring points will
tend to enhance the ability to detect meaningful changes. Neverthe-
less, the detection results depend very much on the thresholdsτ(x),
the sizen of the patch and the sizeN of the search window. In what
follows, we give cues to interpret and set these parameters.

Estimation of spatially-varying thresholdsτ(x) To derive adap-
tive thresholds for change detection, we defineτ(x) as the highest
score computed only from the reference imageu and neighborhoods
B(x) whose fixed sizeN is related to the expected amplitude of
background dynamics:

τ(x)= max
“

sup
y∈B(x) ‖u(x) − u(y)‖2, τ0

”

. (1)

By introducing a minimal valueτ0 defined as the average of the low-
est scores computed over the image domainΩ, we improve the ro-
bustness to low signal-to-noise ratios. In the proposed scene mod-
eling, the background is assumed to be nearly static some irrele-
vant background dynamics described by stochastic processes. Let
s(x) ∈ R

2 be a zero-mean random shift (or displacement) vector. A
patchu(y) at random positiony ∈ B(x) defined asy = x + s(x)
will be potentially moved to the locationx in the second imagev
if no meaningful change occurs:v(x) ≡ u(y − s(x)). Hence,
by definingτ(x) as in (1), variations due to motion in the back-
ground will not be considered as meaningful. These thresholds are
computed directly from image data and the computation of the noise
variance is not required.

The sizeN of the search window depends on the motion ampli-
tude of vesicles we do not want to detect. In the application, we set
N = 3 × 3. This means we are testing dissimilarity in very local
neighborhoods. Increasing the search window size should produce
the same results since the missing or occluded patches are not visible
in the second image for any location.

Multiscale decision fusion The multiscale approach is recom-
mended traditionally to analyze several spatial contexts. In our case,
a multiscale strategy enables to reduce the number of false alarms
and to avoid the precise setting of the patch sizen. Moreover, the
decisionsD(x) are local and we need to consider the whole image



for detecting unusual events when comparing the two images.
Let us considerD(x) = {D1(x), · · · , DL(x)} the set of binary

decisions obtained at pixelx, whereDl(x) is the decision made for
a given patch sizenl = (2l + 1)2, 1 ≤ l ≤ L andL is the num-
ber of sizes considered at each location. Let(kD(x) + 1) be the
number of positive decisions inD(x). The binary Bernouilli vari-
ablesDl(x) are assumed to benot identically distributed and not
really independent mainly because the patches with different sizes
are nested. Nevertheless, according to the Chen-Stein method [11],
PL

l=1 Dl(x) is known to tend to a Poisson law Po(λN (x)) in dis-
tribution asl → ∞ with λN (x) =

PL

l=1 PH0
(Dl(x) = 1). To

make a decision at locationx from local decisions in the whole im-
age, we assume first thatλN (x) defined as (Markov’s inequality):

λN = e−N

|Ω|

PL

l=1

P

y∈Ω eSN,l(y), is constant in the whole image.
Finally, a change occurs at pixel if the probability of false alarm
PFA(x) given by the Poisson tail with parameterλN is lower than a
desired level of significanceα(x):

PFA(x)
△
= PH0

 

L
X

l=1

Dl(x) > kD(x)

!

= 1 −

kD(x)
X

k=0

(λN )k e−λN

k!
.

By applying the Bonferroni strategy for multiple tests, we setα(x) =
ε/|Ω| where|Ω| is the number of tested pixels andε is a user-defined
expected number of false alarms over the whole image. We can refer
to thea contrario framework [12] yielding the same control as Bon-
ferroni while allowing one to setε ≥ 1 if needed. Settingε = 1 as
we do in most experiments, means that about 1 pixel on average is
falsely detected but the remaining detections are “meaningful’ [12].
We define the final multiscale change detectionMCD(u, v) : Ω →
{0, 1} as: MCD(u, v)(x) = 1 if PFA(x) ≤ ε/|Ω| and 0 other-
wise. Our patch-based algorithm given in Fig. 2 is invariant to linear
contrast changes applied to the image pair.

3.2. Quantitative evaluation

When used on experimental TIRF sequences, the detection is com-
puted for each image pair. The chosen parameters wereL = 4 as
maximum patch size, corresponding to9 × 9 patches andε = 1 as
indicated above. Finally, to account for the fact that only the events
happening at the membrane are of interest, only those with a fluo-
rescence level above a given threshold where examined. Because of
the properties of TIRFM, the eventual detections with low fluores-
cence intensity correspond to events below the membrane and not
relevant to recycling. Figure 3 shows a projection in maximum of
a studied sequence with both manually and automatically detected
appearances.

To quantitatively evaluate the accuracy of the detection, a ground
truth was manually established for a couple of sequences, totalling
a few hundreds of events. The detection accuracy was around 85%
with a false positive rate below 10%. Taking into account the dif-
ficulty of establishing a ground truth and the ambiguity of some
events, such figures, which seemed robust across repeated experi-
ments, are compatible with an automated analysis. Note that the use
of micropatterned cell impose some stability to the results by reduc-
ing the variability of the experimental data.

4. NORMALIZED REPRESENTATION FOR ANALYSIS

Once detected, each appearance is supposed to correspond to one
recycling event. Furthermore, once docked to the membrane the
vesicle is immobile till its fusion with the plasma membrane. Thus
the whole event is then characterized by the temporal variation of

Fig. 3. Projection in maximum of a TfR-pHl sequence in TIRFM. In green
the automatically detected appearances; in blue, the apperances labelled man-
ually with numbers.

the fluorescence at that location. However, a robust characterisation
of that temporal profile is complicated by the usual biological vari-
ability and various spatio-temporal perturbations; the computation
of a normalized profile fit for systematic analysis and computation is
needed.

Figure 4A shows such a temporal profile, with the detected ap-
pearance of a vesicle around frame #100. The decrease can clearly
be seen afterwards, up to frame #200 or so. Depending on the par-
ticular studied protein, a biophysical model of that decrease, corre-
sponding to diffusion in the membrane plane or other more complex
mechanisms, might be available or hypothesised. We propose here
to impose no strong constraint, to avoid being tied to a particular pro-
tein or model. It would also allow for comparison between proteins
with different behaviours.

The only hypothesis we make is for the decrease to be convex.
This corresponds to the property, in first approximation, of fluores-
cence of being additive with respect to concentration. Thus any per-
turbation can be detected as concave addition to a convex decreasing
trend; they can be disregarded by focusing on an approximation of
the curve from below. The first step of the processing is the compu-
tation of the ending time of the event. Following the hypothesis of
a convex decrease, that ending time is looked for as corresponding
to the first ’significant’ local minimum after the detection, thus to
the first ’big’ concavity. To that end, the lowerα-scale space [13]
is used, a geometrical multi-scale analysis framework that use local
convexity to build scaled version from the signal itself to its convex
hull. Figure 4B shows the result for 3 values ofα, with the corre-
sponding computed ending times numbered 1, 2 and 3. The chosen
value ofα is calibrated in time with respect to the studied process,
and thus is stable across experiments.

Still following the convex hypothesis, the normalised version of
the recycling event is computed as the lower convex hull of the sig-



Fig. 4. A. The raw signal, B.α-scale space to compute the end of the event,
C. in red the normalized decrease fit for analysis.

nal between the beginning and the end of the event. The resulting
profile is shown figure 4C in red, scaled between 0 and 1. Figure
5A shows all the detected recycling events for one of the studied
600 frames sequence of TfR in TIRFM. Thanks to the proposed nor-
malisation procedure, further studies at the cell wide level are then
enabled, including: i) computation of the half life of the decreases
(cf Fig. 5B), ii) comparison between individual events to distinguish
between biophysical mechanisms, iii)analysis of perturbations of the
biological model. Statistical machine learning algorithms with geo-
metrical distances between curves will be used in future work.

5. CONCLUSION

TIRFM, by focusing on the cellular membrane, allows for the pre-
cise study of endocytosis/recycling and exocytosis pathways. This
work based on the recycling of transmembrane protein, proposes a
framework for the detection and representation of individual recy-
cling events, including a novel statistical detection algorithm. TfR
was used as a case study, and the evaluation of the detections showed
results almost fully compatible with a manual detection approach.

Current work includes the validation of the normalized repre-
sentation usingα-scale space, which could not be included here.
Among biological questions, this framework enables us to study the
comparison of the recycling of TfR and another less studied trans-
menbrane protein, the Langerine. Future plans include the use of
dual-color TIRFM to compare the spatiotemporal dynamics of the
recycling of a transmembrane protein along with others proteins that
constitute the complex machinery of the cell involved in the molec-
ular mechanisms of membrane recycling.

Fig. 5. Normalised decreases for one TfR-pHl TIRFM sequence; B. corre-
sponding histogram of half-life.

6. REFERENCES

[1] J.D. Bleil and M.S. Bretscher, “Transferrin receptor and its recycling
in hela cells,”EMBO J., vol. 1, no. 3, pp. 351–355, 1982.

[2] B.D. Grant and J.G. Donaldson, “Pathways and mechanisms ofendo-
cytic recycling,” Nat. Rev. Mol. Cell. Biol., vol. 10, pp. 597–608, 2009.

[3] E.W. Mllner, B. Neupert, and L.C. Khn, “A specific mrna binding factor
regulates the iron-dependent stability of cytoplasmic transferrin recep-
tor mrna,” Cell, vol. 58, no. 2, pp. 376–382, 1989.

[4] M.E. Daz, G. Ayala, T. Len, R Zoncu, and D. Toomre, “Analyzing
protein-protein spatial-temporal dependencies from image sequences
using fuzzy temporal random sets,”J. Comput. Biol., vol. 15, no. 9, pp.
1221–1236, 2008.

[5] R. Sebastian, M.E. Diaz, G. Ayala, K. Letinic, J. Moncho-Bogani, and
D. Toomre, “Spatio-temporal analysis of constitutive exocytosis in ep-
ithelial cells,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 3, no.
1, pp. 17–32, 2006.

[6] C.J. Merrifield, D. Perrais, and D. Zenisek, “Coupling between
clathrin-coated-pit invagination, cortactin recruitment, and membrane
scission observed in live cells.,”Cell, vol. 121, pp. 593–606, 2005.

[7] R. Niu, P. Varshney, M. Moore, and D. Klamer, “Decision fusion in
a wireless sensor network with a large number of sensors,” inProc.
FUSION’04, Stockholm, Sweden, 2004.

[8] S. Ince and J. Konrad, “Geometry-based estimation of occlusions form
video frame pairs,” inProc. ICASSP’05, Philadelphia, USA, 2005.

[9] P.M. Jodoin, M. Minette, and C. Rosenberger, “Segmentation frame-
work based on label field fusion,”IEEE T. Signal Processing, vol. 16,
pp. 2535–2550, 2007.

[10] N. Katenka, E. Levina, and G. Michailidis, “Local vote decision fu-
sion for target detection in wireless sensor netwroks.,”IEEE T. Signal
Processing, vol. 56, pp. 329–338, 2008.

[11] R. Arratia, L. Goldstein, and L. Gordon, “Two moments suffice for
poisson approximations: the chen-stein method,”Annals of Probabil-
ity, vol. 17, pp. 9–25, 1989.

[12] A. Desolneux, L. Moisan, and J.M. Morel, “Meaningful alignments,”
Int. J. Comp. Vis., vol. 40, pp. 7–23, 2000.

[13] A. Chessel, B. Cinquin, S. Bardin, J. Salamero, and Ch. Kervrann,
“Computational geometry-based scale-space and modal image decom-
position,” inProc. SSVM’09, Voss, Norway, June 2009.


