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ABSTRACT

The tracking of cell populations in time-lapse microscopy images
enables high-throughput spatiotemporal measurements of cell dy-
namics. In this paper, we present a new algorithm to simultane-
ously track many cells in crowded areas. The algorithm runs in real
time and deals with thousands of cells. The main contribution of
this paper is that the algorithm is able to maintain the spatiotemporal
consistency of the tracks in crowded areas, even when the temporal
resolution is coarse. We validate our approach in terms of its ability
to track yeast cells.

Index Terms— time-lapse microscopy, tracking, regularization,
crowd, graph matching, yeast, interaction networks.

1. INTRODUCTION

Due to the dynamic nature of biological systems, it is highly desir-
able to quantify their evolution through time to improve our under-
standing of their interaction networks. Large-scale time-lapse imag-
ing of cells is nowadays performed routinely thanks to the autom-
atization achieved in the field of light microscopy. The obtained
datasets are such that it is not possible to analyze them manually
within any tolerable amount of time [1].

Present-day efforts in cell tracking are application-oriented and
depend on different methodological approaches. Several strategies
exist to perform inter-frame target association. The most straightfor-
ward is to link each detected target with the closest one in the sub-
sequent frame, where the used distance may include similarity mea-
sures [2]. This simplicity is lost when the cells are densely packed
and interact with each other. Joint optimization tracing techniques
provide good results in such cases [3, 4].

The usual probabilistic approach to cell tracking is the Bayesian
filtering framework and involves statistical dynamical models [5, 6,
7]. However, incorporating a dynamical model is hazardous since
the behavior of biological systems may vary under different environ-
ments. It has also been proposed to use graph-theoretic approaches.
In this framework the solution is obtained using standard graph opti-
mization algorithms on a weighted graph composed of the detected
targets and all possible correspondences [8, 9].

In this paper, we present a new and fast algorithm which is
specialized for tracking biological cells within crowds. It relies on
graph-theoretic techniques to minimize a cost functional that models
the characteristic motion in highly packed scenes and imposes a cer-
tain level of coherence in the displacement field while being capable
of handling large movements (i.e., coarse temporal resolution).
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2. PROBABILISTIC FORMULATION

In this section, we develop a probabilistic formulation inspired by the
Bayesian filtering framework. Our setting is ruled by probabilistic
graphs and leads to a simple implementation.

2.1. Notation

We denote M* = {m/};_1. n, the set of measurements m” =
(m?, s;‘f) at frame k, where each measurement contains information
about the position wf and features sf of each target. Analogously,
we define the set of positions and features at a given frame by X* =
{2} }j=1..n, and S* = {s}}=1 .

We are interested in finding the best association between two
consecutive frames given the knowledge of the measurements
in these frames. We define a pairing as a subset A* C Q =
{1...Nj_1} x {1...Ny}, where (i,5) € A" indicates that the
measurement mf‘l in frame (k — 1) corresponds to the mea-
surement mf in frame k. We restrict the admissible solution by
disallowing multiple assignments to the same measurement. For-
mally, given (4, ), (I,n) € A", then m[™" = m; "' if and only
if mf = mP (see Fig.1). Note that the cell-tracking problem is
equivalent to finding the corresponding A” at each transition interval.

=

(b) (©

Fig. 1. Graph representation of the sets M* ™! (left side), M* (right
side) with (a) all possible correspondences given by €2, (b) the most
likely correspondences given by G, and (c) a possible pairing A

2.2. Bayesian Formulation

We consider the measurements sets as random variables. This im-
plies that we are also looking for a pairing which is a random ele-
ment within the space of all possible pairings. We are interested in
finding a pairing that maximizes its conditional probability given the
known information, that is, the measurements

AF = arg max{ P(A"|MF ™' M")}. (1)

Ak CQ
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Using an approach similar to the one in the Bayesian filtering
framework, and assuming mutual independence between the posi-
tions and the features, we restate the maximization criteria of (1) as

AF = arg max{P(A") P(X"|X" 1 AF)P(S¥ISF AR, ()
Ak CQ

where P(A*) reflects our prior knowledge about the preferred pair-
ings, P(X*|X*~1 A¥) corresponds to a measure of likelihood of
the positions given that we know the position in the previous frame
through the pairing A*, and P(S¥|S*~*, A¥) corresponds to a mea-
sure of how likely the feature values are given the knowledge of the
feature values in the previous frame through the pairing A*.

We finally model those probabilities as

k— k Ak
P(Xk‘xk—17Ak) o e~ Sueak hx (0X 1 xk ARy

P(Sﬂskil Ak) o e Zwveak s (v,8F=1 sk AF)
) ’

where px is a compatibility measure of the joint movement and 5

is a feature compatibility measure.

3. EFFICIENT GRAPH-BASED ALGORITHM

We now cast the problem of finding the best pairing A* in (2) as
a global graph-optimization problem. First of all, we consider the
complete bipartite graph whose nodes represent the measurement
sets M¥~1 and M¥, and whose edges are represented by . Our
goal is to select a subgraph such that the sum of the weights w;; of
the edges is maximized subject to the restriction that all vertices in
this graph have a degree less or equal to one, so that each target de-
tection from set M* ™! is assigned to at most one target detection on
MP and vice-versa. This set of edges receives the name of matching.
It exactly corresponds to the pairing A* if we appropriately choose
the edge weights w;;. Despite the fact that we are maximizing a cri-
terion based on graph edges, we are not biasing the solution towards
high connectivity (see Fig.2).

This graph-optimization problem corresponds to a known prob-
lem in graph theory called maximum weighted bipartite graph
matching [10], which can easily be expressed in the context of in-
teger linear programming. In this framework, the objective is to

maximize
Ni_—1 Ny

Z Zwijxij 3)

i=1 j=1

subject to év:kfl Xij <1, Z;V:k1 xi; < 1,and x;; > 0.

The solution to the integer linear programming problem would
be either x;; = 0 or x;; = 1, where x;; = 0 denotes (,5) ¢ A*
and x;; = 1 denotes (4, j) € A In general, integer linear program-
ming problems are well-known problems considered to be NP-hard.
Therefore, there exist many generic algorithms capable of solving
them at the expense of high computational costs. Fortunately, the
computational complexity can be drastically reduced using graph
techniques thanks to the particularities of our very specific case.

In our case, we know beforehand that many pairings between
measurements of M*~! and M” are highly unlikely. These incom-
patibilities are usually known when designing the experimental set-
up (e.g., a cell will not be able to move more than a certain distance,
the shape of a target cannot change through time).

In our formulation, the probability of any matching that includes
one of these unlikely edges is set to P(A*) = 0. Therefore, the so-
lution has to be found in a sparse-graph G (see Fig.1b), where the

(a) (b)

Fig. 2. A maximum-weight matching (a) is not necessarily a
maximum-cardinality matching (b).

edges only connect possible correspondences (i.e., measurements lo-
cated within a certain region). For all possible matchings within this
sparse graph, we can chose a non-zero value for P(A¥) such that the
solution of (2) corresponds to the solution in (3) with

wij = —ps((i,5), S, %, AF) — Aux ((3,4), XF71, X*, AF),

where ) is a positive tradeoff parameter between the compatibility
measure of the joint movement and the feature compatibility mea-
sure. For A = 0 the solution of the pairing is totally based on target
features, and for high values of A, the solution is dominated by the
joint movement criteria. Note that the compatibility measure of the
joint movement acts as a regularization term, that is, modifies the op-
timal solution of the problem given our prior knowledge of the flow
behavior. Therefore, the compatibility measure of the joint move-
ment cannot act independently and should always work together with
the feature compatibility measure.

Note that it is necessary to have a pairing A¥ to compute the
edge weights w;;. This can be resolved by the following iterative
algorithm:

Algorithm 1: Iterative Reweighted Multi-Target Tracker

Initialization of G, A*;
repeat
s, pux < A¥ (update compatibility measures);
Wij <— s, ix (update edge weights);
A® + Maximum Weighted Graph Matching (G, w;;)
until convergence ;
return A"

The most costly part of the algorithm corresponds to the exe-
cution of the Maximum Weighted Graph Matching function. Some
graph algorithms can perform this function in O(N E + N2 log(N))
steps, where N = Nj_1 + Nj and E is the number of edges (i.e.,
possible correspondences). A detailed description of the implemen-
tation will be presented in the future elsewhere, however, the basic
ingredients can be found in [11].

Note the parallelism with the widely used Expectation-Maximization

algorithm. The edge-weight update plays the role of the Expecta-
tion step, and the graph-optimization step is the counterpart of the
Maximization step.

4. MOTION MODEL

Blocks of cells often tend to move together in heavy populated envi-
ronments, so that the cells preserve a certain spatiotemporal continu-
ity in their movement (see Fig. 5). We model this behavior using a
displacement model in the compatibility measure of the joint move-
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ment /1x, as follows:
px (3, 5), X", XE, AF) )
1 - _ . _
= VT > A@ ™) -2 )~ (@ -2 I,

i k—1 k—1 . f
x; E-’\f,i neighbor [ displacement

i— 7 displacement

where ./\/'ik*1 is the non-empty set of neighbors of the detected cell
at mffl, and where A is a mapping induced by A that satisfies
A(zF~") = x¥ whenever (i, j) € A*.

The regularization term g x measures the average relative dis-
placement of the neighboring targets given an pairing A*. Its mini-
mization imposes that neighboring target detections go to neighbor-
ing target detections (see Fig.3). This term becomes crucial when all
targets look alike, which is the case when imaging living cells.

r-——=—=-"=-—"=-"=-=-=-=-= r-—=—=—=-"=-"=-=-=-=-=-=
I I

frame k — 1 frame k

Fig. 3. Schematic representation of the optimal configuration cor-
responding to the measure px. The optimal value is reached when
pairing mffl with m?, making the movement coherent. As can be
seen, the criterion is consistent, even when facing large displace-
ments.

5. APPLICATION TO TIME-LAPSE MICROSCOPY

In order to validate the efficacy of the method in tracking individual
cells in large crowds, the algorithm was applied to a sequence of
images obtained from yeast cell populations.

S. cerevisiae strains (ATCC 201388) were grown within a mi-
crofluidic chamber in YPD medium at 30°C. Monolayer-grown
cell crowds were imaged with a Nikon Ti-E microscope (Nikon
instruments inc., Melville, U.S.A.), a 60 x objective (plan apo, 1.4
oil), and a 1.5 scope, resulting in a total 90X magnification. An
iXonEM camera (Andor technology plc., Belfast, U.K.) controlled
by a VB6 based software was used to acquire 14-bit images of
1024 x 1024 pixels with an exposure time of 50ms, an analogical
gain of 2.4, and an EM gain of 2.

We used watershed-based segmentation [12] to split the image
domain in non-overlapping regions (see Fig. 4). This segmentation
provides us with several important parameters for the construction
of our graph G. In particular we identify the centroid of each wa-
tershed region as the position wf ~1, and the grayscale values within
a bounding box covering the watershed region as the features sf -1
The watershed segmentation also gives information about neighbor-
ing regions: regions that share dams with other regions are consid-
ered neighbors. We use this information to determine the non-empty
sets of neighbors in (4). For the watershed region detector to suc-
ceed, we need dense areas of targets within crowds. Otherwise, some
heuristic methods can be applied to eliminate regions that do not rep-
resent cells.
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Fig. 4. Watershed segmentation: (a) original image with overlaid
dams (b).

We define the similarity criteria ps between two targets as the
mean-squared error of the grayscale values between the two corre-
sponding watershed regions. In order to avoid misalignments of the
images when computing the MSE, we used the Three-Step Search
(TSS) block-matching algorithm [13]. Some typical results are pre-
sented in Fig. 5. In the simulations presented in this section we
used an initial matching A® based on features only (i.e. we run the
Maximum Weighted Graph Matching function once with A = 0).

To illustrate the adequacy of our motion model, we compared
the use of ps alone to the joint use of g and px (see Fig. 6¢). In
this set-up, all targets look very similar, and the p1s measure is not
able to discriminate well between all possible pairings. Introducing
1x notably improves the solution even after one single iteration.

For the purpose of assessing tracking performances, we man-
ually identified cell trajectories within an area of interest with an
average population of 120 yeast cells over a span of 50 frames. We
quantified the quality of the pairing process by computing the rate of
successful connections made by the algorithm over the total number
of connections in each frame. We summarize the results obtained by
our method in Table 1.

Table 1. Success rate when tracking yeast cells.
| A [ Max. rate [%] [ Min. rate [%] [ Average rate [%] ‘

0 100.0 67.0 95.5
50 100.0 72.0 97.6
100 100.0 90.0 98.6

The similarity measure ps is sufficient for obtaining a correct
pairing when cell movements are small (i.e., past and present posi-
tions overlap). However, when pressure inside the device exceeds
a critical level, clusters of cells displace pushing the neighboring
ones. This situation cannot be appropriately handled by using ps
alone, and tracking is then improved with the introduction of px.
The appropriate choice of \ strongly depends on the behavior of the
motion vector field and should be further investigated.

6. CONCLUSION

We have presented a new algorithm for multi-cell tracking in
crowded areas. It is fast and easy to implement. It runs in real
time and is able to deal with thousands of cells. We have specifically
designed model-based cost functions that take account of multiple
cell interactions. The parameter A of the algorithm needs to be



Fig. 5. Flow-like behavior of the constrained movement of a crowd of cells. The red lines point towards the position in the subsequent frame.

chosen so as to strike a balance between the frequently conflicting
goals of having flow-like trajectories and enforcing the similarity of
individual cells across frames. The question of how to efficiently
resolve this tradeoft situation needs further investigation and will be
addressed in future work.

© (d)

Fig. 6. Pairing between two consecutive frames. The red lines point
towards the location of the corresponding region in the subsequent
frame. (a) previous frame k — 1, (b) current frame £, (c) solution
based only on the similarity measure s (A = 0), (d) solution with a
weighted combination of both measures after one iteration using (c)
as initial matching (A = 100).
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