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Abstract

In this paper, we develop and validate a new Statistically Assisted Fluid Registration Algorithm 

(SAFIRA) for brain images. A non-statistical version of this algorithm was first implemented in 

[2] and re-formulated using Lagrangian mechanics in [3]. Here we extend this algorithm to 3D: 

given 3D brain images from a population, vector fields and their corresponding deformation 

matrices are computed in a first round of registrations using the non-statistical implementation. 

Covariance matrices for both the deformation matrices and the vector fields are then obtained and 

incorporated (separately or jointly) in the regularizing (i.e., the non-conservative Lagrangian) 

terms, creating four versions of the algorithm. We evaluated the accuracy of each algorithm variant 

using the manually labeled LPBA40 dataset, which provides us with ground truth anatomical 

segmentations. We also compared the power of the different algorithms using tensor-based 

morphometry -a technique to analyze local volumetric differences in brain structure-applied to 46 

3D brain scans from healthy monozygotic twins.

Index Terms

fluid; empirically-guided registration; Lagrangian mechanics

1. INTRODUCTION

Nonlinear registration is an image analysis procedure that matches one image or volume 

with another using biological or geometrical features present in both images.
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Most registration algorithms select a similarity term (or cost function) - typically a distance 

between common anatomical or stereotaxic landmarks or an intensity-based measure over 

the whole image such as the squared-intensity difference. A regularizer compensates for the 

effects of this data fidelity term and enforces desirable properties in the deformation, such as 

smoothness, invertibility and inverse-consistency [9]. One method to account for these 

properties is to add the gradient of the similarity criterion as a distributed force force field in 

the mechanical equations that govern elastic [1] or viscous fluid motions [4]. Other non-

physical regularization models such as Gaussian filtering have been implemented, as these 

tend to be more efficient than the filters that are needed to implement continuum-mechanical 

operators [18].

As brain structure varies widely across subjects, and across the human lifespan, some 

registration methods have been developed to encode information on its natural variability [7, 

6]. However, very few widely used volume registration methods incorporate empirical 

information on population variability in brain structure. The use of empirical statistics has 

been advocated many times, but none of the 14 nonlinear registration methods evaluated in 

[10] uses empirical information on brain variation during the registration process.

In fact, in the registration methods mentioned so far, a field of 3D displacement vectors is 

usually computed based on univariate data (one value per voxel) or from pre-defined 

landmarks. Consequently, as the information that can be consistently identified is limited, a 

realistic model is needed to interpolate the deformation to the rest of the brain. If such 

empirical information on brain variation was added in the registration process, the statistics 

of the modeled differences in brain structure would better match those that truly occur, 

possibly improving registration accuracy, stability, and convergence [8]. In some prior 

approaches, the statistics of the strain tensors were nonlinearly rescaled so that they could be 

used in a Demons-like registration algorithm [5]. Early studies by Gee and colleagues 

performed principal component analysis of intra-subject registration fields to develop an 

empirical model of brain shape, for use as a Bayesian prior to constrain registrations [8].

In this paper, we focused on fluid registration as it overcomes several known limitations of 

some continuum-mechanical elastic models, which are derived under small deformation 

assumptions and the resulting mappings may not be invertible if large image transformations 

are needed [4]. Fluid transformations remain diffeomorphic even for large deformations. We 

introduce a new Lagrangian approach, which incorporates different types (vector and tensor) 

of statistics on the expected deformations in the registration. This provides a mechanically 

meaningful framework to incorporate biological information in the registration process.

One application that we use to test our algorithm - for which it was primarily designed - is 

Tensor-Based Morphometry (TBM). TBM is an image analysis method that has been used 

successfully to detect morphometric differences associated with diseases [12] or normal 

brain development [16]. It consists of a registration step and a statistical analysis step. Our 

registration algorithm is well-suited for TBM as it regularizes the deformation tensors Σ = 

JT J = (Id+∇q)T (Id+∇q) that are statistically analyzed in the second step of the method [11]. 

As such, there is a consistency between the subsequent statistical analysis of tensors arising 
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from the registration, and the empirical information used to estimate the tensors in the first 

place.

Here, we first compare the accuracy of the different versions of the algorithm using the 

manually-labeled LPBA40 dataset. We also perform a Tensor-Based Morphometry analysis 

of brain MRI data from 23 monozygotic (MZ; identical) twin pairs to evaluate their 

statistical power in a research study. For each dataset, a first round of registrations was used 

to register the images using the non-statistical fluid code to obtain an initial distribution for 

the displacements and the deformation matrices. The mean and covariance matrices were 

computed, and a second round of registration incorporated either the vector-based, tensor-

based or both statistics. In the TBM analysis, resemblances within pairs of twins were 

assessed by computing the intraclass correlation (ICC) of the determinant of the Jacobian 

matrices derived from the deformation fields. Both the accuracy and effects sizes were better 

for the vector-based statistical registration method.

2. REGISTRATION ALGORITHMS

2.1. Background

The 3D brain image volume is regarded as embedded in a deformable continuum-

mechanical system; each voxel is seen as a particle of this deforming system. Its dynamic 

behavior may be modeled using Newtonian mechanics, as in [4]. In this case, the 

displacement of each particle (i.e., the voxels) is constrained by the Navier-Stokes equation 

for viscous fluid systems. Here, this equation is modified to integrate statistical data 

computed from the dataset. The Newtonian formulation does not clarify the mechanical role 

of the similarity and regularizing terms; on the other hand, the generalized framework 

determined by the non-conservative Lagrangian structure is flexible enough to contain two 

types of statistical information obtained from the dataset while remaining mechanically 

meaningful.

2.2. General formulation

The Lagrangian L can express the dynamic behavior of a system that is subject to 

conservative forces L = T − V. In the conservative case, T(q̇) and V(q) represent the kinetic 

energy and the potential energy of the system, respectively. q is the displacement, and q̇ is 

the velocity of the system. One way to find the Lagrangian L is to examine its integral, 

called the action, 𝒮 (𝒮 = ∫ t0

t1Ldt). The paths followed by a mechanical system between the 

times t0 and t1 are the ones that minimize the action.

When the system is subjected to non-conservative forces,  changes to: 𝒮 = ∫ t0

t1L + W dt

with δW = F⃗.δr⃗. δW is the work done by the non-conservative force F⃗ during the virtual 

displacement δr⃗, i.e., a variation associated with the possible body position r⃗, and not the 

actual solution r⃗(t) (r⃗ is chosen so that the force F⃗ remains constant during the displacement 

δr⃗ and depends only on q). To find the path followed by the dynamic system (minimization 

of the action), δ  can be derived as

Brun et al. Page 3

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2018 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



δ𝒮 = ∫
t0

t1
δL + δW dt = 0

Hence, ∂L
∂q − d

dt
∂L
∂q. + F ∂ r

∂q = 0;

(1)

(see [17] for more details). This dynamic equation defines the movement of a non-

conservative system at each time t.

2.3. Definition of the non-statistical version of algorithm

Here and in our previous work [2], the similarity between a template and the deforming 

image is defined by the sum of squared intensity differences (SSD) criterion: Cost = Sim(I, J 
∘ q) = ∫(I(x) − J(q(x))2dx, but any other image similarity criterion could be used. In [2], we 

combined the fluid and Riemannian frameworks to create a so-called isotropic Riemannian 

fluid registration algorithm. At each voxel, for each time step Δt, the regularizer and image 

similarity cost terms were optimized to find the velocity q̇ according to the equation (1) 

with:

1. d
dt

∂L
∂q. j

= dq.(q, t)
dt = d

dt
∂

∂q.
1
2‖q.‖2

2

2. ∂L
∂q = ∇qCost(I, J, q)

3. F ∂ r
∂q = α∇q. Regriem(q.) + βq.

Hence, we have the following expressions:

1. Kinetic energy: T = 1
2‖q. j‖2

2

2. Potential Energy: V = Cost(q)

3. Nonconservative energy: V
F 1

+ V
F 2

= 1
2 β‖q.‖2

2 + αRegRiem(q.)

RegRiem constrains the deformation of one image into another by acting on the rate of strain 

Σq̇ rather than on the deformation matrix Σ (as was the case in [13]). Riemannian metrics are 

more appropriate than Euclidean ones, as the deformation tensors Σ’s do not form a vector 

space but a cone in the vector space of 3×3 matrices, and standard Euclidean operations 

cannot be applied.

2.4. Statistical formulation

Given a dataset, we execute a first round of registrations to compute the statistics needed for 

the statistical regularization, i.e., that will be incorporated in the regularizing (non-

conservative) terms. For each image from our dataset, we apply the non-statistical algorithm 

(see previous paragraph) to obtain a distribution of vector fields, from which we compute the 
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covariance of the deformation tensors, Σ, and the covariance of the displacement fields, q⃗. 
VF⃗1 and VF⃗2 can be changed into their statistical versions using Mahalanobis distances.

The first non-conservative regularizing term can be modified as:

V
F 2

= 1
4∫ Vect(Wq. − Wq.)Cov−1Vect(Wq. − Wq.)

T

Here Wq̇ = log(Σq̇), and to avoid any bias, we choose to keep the average rate of strain 

Wq. = 1
N ∑i log(∑q.i

) equal to zero at all times. The covariance Cov is computed using 

deformation tensors Σq. Using Σq̇ would be equivalent because q and q̇ are collinear to each 

other.

The other non-conservative term can also be modified to include the covariance of the 

displacements. The Euclidean norm ||.||2 is replaced by a Mahalanobis distance in VF⃗1:

V
F 1

= ‖q. j‖
2 = q. j

Tcovq j
−1q. j

with covq j
= 1

N ∑i (qi − q j)
T(qi − q j), the covariance of the displacements q at a voxel j across 

the images i. This non-conservative term may be interpreted as a Rayleigh dissipation term. 

In fact, it is proportional to the quadratic velocity.

The algorithm can include both of the previous types of statistical data (vector- + tensor-

based statistical version), the information on the Σ’s only (tensor-based version), information 

on the displacement fields q only (vector-based version) or neither of them (non-statistical 

version of the algorithm).

3. DATA AND ANALYSIS

3.1. Data and preprocessing

3D T1-weighted images were acquired from 23 pairs of monozygotic (MZ) (11 male and 12 

female pairs) using a 4T Bruker Medspec whole body scanner (rapid gradient echo (MP-
RAGE) sequence) at the Center for Magnetic Resonance (University of Queensland, 

Australia). Another scan was identically performed on a subject who was not part of the 

genetic study, but whose scan was used as a template (target brain) for the registration. The 

age range for the subjects was 22 – 25 years. All scans were then aligned to the ICBM53 

template using 9-parameter registration (i.e., translational and rotational alignment, allowing 

scaling in 3 independent directions - FMRIB’s Linear Image Registration Toolbox. The 

LPBA40 brain MRI dataset was used to validate registration accuracy. Details can be found 

at http://www.loni.ucla.edu/~shattuck/resources/lpba40/.

3.2. Accuracy of volume quantification

As our algorithm was primarily developed to study volume and shape differences between 

subjects and groups in morphological studies such as TBM, we first estimated how the 
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incorporation of different types of statistics influenced the results of volume estimation. We 

randomly chose a subject from the LPBA40 dataset as a template and registered all the other 

MRI scans to this template using the 3 independent versions of our algorithm (non-

statistical, tensor- and vector-based). Then, we applied the vector field, obtained from each 

subject’s registration to the template, to the corresponding labeled image (for each of the 

subjects, 56 structures, or regions of interest ROIs, were delineated manually. Each 

registered labeled image was compared to the manually segmented labeled template (ground 

truth segmentation). Volume differences between the template Tr and each subject Sr were 

reported for each region and averaged across the population. The volume similarity 

coefficient Vs was defined as [10]: Vs = 2
∑ ( ∣ Sr ∣ − ∣ Tr ∣ )
∑( ∣ Sr ∣ + ∣ Tr ∣ ) . For this measure, smaller values 

denote a lower segmentation error, and a more accurate quantification of substructure 

volumes.

3.3. Scalar values and heritability measures

The statistical power of the four algorithm variants was compared using a morphometry 

study. To measure the anatomical resemblance between MZ twin pairs, we computed the 

voxel-wise intraclass correlation coefficient (ICC) in the cerebrum, according to the 

equation: ICC =
σb

2

(σb
2 + σw

2 )
. σb

2 is the pooled variance between pairs and σw
2  is the variance 

within pairs. These ICC measures were computed from the Jacobian determinant at each 

voxel in the registered maps, which is an index of the regional volume of specific structures, 

relative to the standard template. As such, the ICC represents how similar brain structure 

volumes are between twins. Higher values mean that volumes are more correlated across 

members of a twin pair. We did not want to assume that the data, det(J), was normally 

distributed across subjects, so we computed p-values at each voxel with a voxel wise 

permutation test, to establish a null distribution for the ICC statistics at each voxel [14].

4. RESULTS

4.1. Estimating the volume conservation

Figure 1 shows the volume quantification error, Vs, for all ROIs. Blue colors indicate small 

volume difference between the registered label and the manually defined ground truth label, 

whereas red colors indicate large differences between the volume of the deformed 

segmentation and the manually defined ground truth. Results are shown for the three 

independent versions of the algorithm (non-statistical, vector-based and tensor-based 

statistics). Overall, incorporating vector-based statistics on the deformation field during the 

registration improves volumetric matching, and makes volume quantification more accurate. 

This is the especially clear for subcortical gray matter structures, such as the caudate and 

putamen.

4.2. Significance of the Intraclass Correlation

The significance of the ICC is displayed as 3D maps for the whole cerebrum in Figure 2 - 

top panel. The anatomical pattern is consistent across all methods. Subcortical structures, 
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white matter and ventricles are influenced by genetic differences across individuals. Similar 

patterns of resemblance are found with all four versions, but the signal is more powerful 

when the vector-based algorithm is used for the registration step. To better quantify the 

difference in power, cumulative distribution functions were plotted (Figure 2 - bottom 

panel), based on the p values for the ICC and are consistent with the previous results.

5. CONCLUSION

Here we combine the advantages of a large-deformation fluid matching approach with 

empirical statistics on population variability in anatomy. Our registration algorithm, called 

SAFIRA, was mathematically formulated using a non-conservative Lagrangian approach. 

Overall, the vector-based statistical method showed the greatest improvement in detection 

sensitivity and accuracy versus the non-statistical Riemannian fluid code.
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Fig. 1. 
Volume Quantification Error. Blue colors show better registration for the algorithm using 

vector-based statistics (middle column).
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Fig. 2. 
Top: Significance of the ICC (log scale - p = 0.05 corresponds to yellow). Bottom: 

Corresponding cumulative distribution functions.
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