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ABSTRACT

The importance of accurate early diagnostics of autism that severely
affects personal behavior and communication skills cannot be over-
stated. Neuropathological studies have revealed an abnormal anatomy
of the Corpus Callosum (CC) in autistic brains. We propose a new
approach to quantitative analysis of three-dimensional (3D) magnetic
resonance images (MRI) of the brain that ensures a more accurate
quanti cation of anatomical differences between the CC of autistic
and normal subjects. It consists of three main processing steps: (i) seg-
menting the CC from a given 3D MRI using the learned CC shape and
visual appearance; (ii) extracting a centerline of the CC; and (iii) cylin-
drical mapping of the CC surface for its comparative analysis. Our
experiments revealed signi cant differences (at the 95% con dence
level) between 17 normal and 17 autistic subjects in four anatomical
divisions, i.e. splenium, rostrum, genu and body of their CC.

Index Terms— Segmentation, Modeling, Corpus Callosum,
Autism.

1. INTRODUCTION

Autistic Spectrum Disorder (ASD), or autism, is a complex neurolog-
ical disability characterized by qualitative abnormalities in behavior
and higher cognitive functions [1]. It typically appears during the rst
three years of life and impacts development of social interaction and
communication skills. According to the Centers for Disease Control
and Prevention (CDC), about 1 in 110 American children fall some-
where in the autistic spectrum. Although the cause of autism is still
largely not clear, researchers have suggested that genetic, developmen-
tal, and environmental factors may be the cause or the predisposing ef-
fects towards developing autism [2]. Multiple studies during the past
decade have revealed that different brain structures are involved in the
abnormal neuro-development associated with autism. For example,
MRI studies have shown an increased volume in cerebellar white mat-
ter of young children with autism relative to controls [3]. Also, cortical
grey matter enlargement, particularly in the frontal and temporal lobes,
is another abnormal feature of the brain in autistic patients [4]. This
paper develops a new framework for analyzing the surface of CC for
normal and autistic subjects. The goal is to identify whether or not the
CC involved in the abnormal neural development is associated with
autism.

The CC is the largest ber bundle connecting the left and the right
cerebral hemispheres in the human brain. Since the higher cognitive
functions of the brain are highly affected by the impaired communi-
cation between the hemispheres, several studies [5–12] have proposed
to analyze the CC for autistic subjects. In [5–8], the CC had been
traced from the midsagittal MRI slice. Statistical difference analysis
was applied to nd out which part in the CC contributes signi cantly to
identi cation of autistic brains. Chung et al. [9] applied a voxel based
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morphometry approach using a freely available public domain soft-
ware package (i.e., SPM99 software [13]) to spatially normalize the
midsagital MRI slice to a common stereotactic space in order to seg-
ment the CC and localize the CC subregions that are related to autism.
To cover more CC anatomy, studies [10–12] account not only for the
midsagital slice but also for four adjacent slices on both sides. He
et al., [10] traced the CC from the nine slices based on a semi auto-
mated active contour methodology. A contour stitching technique was
applied to create the 3D CC surfaces for each subject. Statistical differ-
ence analysis was applied to the signed distance map from each subject
surface to a template. Instead of using a signed distance map metric,
Vidal et al., [12] utilized the CC thickness—the distance between uni-
formly spaced points on the CC surface to the CC medial line (i.e.,
the average curve between superior and inferior CC boundaries)—to
localize regions of callosal thinning in autism.

To the best of our knowledge, all the previous works have focused
on analyzing either the 2D cross section of the midsagittal of the CC
or the midsagital slice along with four adjacent slices on both sides.
Unfortunately, this is insuf cient for detecting the whole anatomic
variability of the CC of autistic subjects. To ensure a complete 3D
analysis, the whole CC surface (traced from all the slices in which
the CC appears) is mapped onto a cylinder in such a way as to com-
pare more accurately various autistic and normal CC. Our cylindrical
mapping has been inspired by the functional conformal mapping [14].
Similar to the conformal mapping, it is a bijective (one-to-one) trans-
formation and preserves angular relationships between the points. For
these reasons, the conformal mapping was recently considered an ef -
cient technique for surface matching [15] and visualization of various
anatomic structures [16].

The paper is organized as follows: Section 2 overviews in brief
our CC segmentation using a learned soft CC shape model and an
identi able joint Markov-Gibbs random eld (MGRF) model of 3D
MRI and “object–background” region maps. Section 3 details the ex-
traction of the centerline of the segmented CC by solving the Eikonal
equation. The cylindrical mapping of the CC after nding its center-
line is described in Section 4. Experimental results and conclusions
are presented in Section 5.

2. SEGMENTATION OF CORPUS CALLOSUM USING A
SHAPE MODEL AND A JOINT MGRF MODEL OF 3D MRI

Let � � ��� � � � � � � ��, � � ���� ���, and � � ��� �� be a
set of � integer gray levels, a set of object (“ob”) and background
(“bg”) labels, and a unit interval, respectively. Let a 3D arithmetic
grid � � ���� �� �� � � � �� �� � � � � � � �	 � � �� �� � � � � � �
�	 � � �� �� � � � � 	 � �� support grayscale MRI � � � � �, their
binary region maps � � � � �, and probabilistic shape model
� � � � �. The shape model allows for registering (aligning)
3D brain MRI. The co-registered 3D MRI and their region maps are
modeled with a joint MGRF speci ed by a probability distribution

 ��� ���� � 
 �����������
 ��� where 
 ��� is an uncondi-
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tional Gibbs distribution of co-registered region maps, � ����� is a
conditional distribution of the MRI signals given the map, and � �����
is a conditional distribution of the prior shape of the CC given the map.

We focus on accurate identi cation of spatial voxel interactions
in � ���, voxel-wise distributions of intensities in � �����, and prior
distribution of the shape of the CC in � ����� for co-aligned 3D MR
images. The probabilistic 3D shape model � is learned from a train-
ing set of manually segmented and co-aligned images. To perform
the initial CC segmentation, every given MRI is aligned to one of the
training images. The shape model provides the voxel-wise object and
background probabilities being used, together with the conditional im-
age intensity model � �����, to build an initial region map. The nal
Bayesian segmentation is performed using the identi ed joint MGRF
model of the MRI and region maps.

2.1. Spatial voxel interaction in the CC

A generic MGRF of region maps accounts only for pairwise interac-
tion between each region label and its neighbors. Generally, the inter-
action structure and Gibbs potentials are arbitrary and can be identi ed
from the training data. For simplicity, we restrict the interaction struc-
ture to the nearest voxels only, (i.e. to the voxel 26-neighborhood), and
assume, by symmetry considerations, that the potentials depend only
on intra- or inter-region position of each voxel pair (i.e. whether the
labels are equal or not) but are independent of its relative orientation.
Under these restrictions, it is similar to the conventional auto-binomial
model and differs only in that the potentials are estimated analytically.

The 26-neighborhood has three types of symmetric pairwise in-
teractions speci ed by the absolute distance � between two voxels
in the same and adjacent MRI slices (� � �,

�
�, and

�
�, respec-

tively): (i) the closest pairs with the inter-voxel coordinate offsets
�� � ���� �� ��� ��� �� ��� ��� �� ���; (ii) the farther diagonal pairs
with the offsets ��

� � ���� ������ ��� ������ ������ ���, and (iii)
the farthest diagonal pairs with the offsets ��

� � �����������.
The potentials of each type are bi-valued because only the coinci-
dence of the labels is taken into account: �� � ������� ������ where
����� � ����� �

�� if � � �� and ����� � ����� �
�� if � �� ��; � � � �

������
�
��. Then the MGRF model of region maps is as follows:

� ��� � 	
�
�

���������

�
���

�
����������

���������� ��	���	���	��

To identify the MGRF model described in the equation, analytical
maximum likelihood estimates are formed in line with [17] as follows:

����� � 	����� � �

�
��������	 �

�

�
(1)

where �������� denotes the relative frequency of the equal label
pairs in the equivalent voxel pairs ����� 	� 
�� �� �� 	  �� 
  ��:
��� 	� 
� � �; �� �� 	  �� 
  � � �; ��� �� � � ���.

2.2. Conditional intensity model for the 3D MRI

We use a simple random eld of conditionally independent intensities
to model the 3D MRI, given a region map:

� ����� �
�

���������
�	����� ��������

where the voxel-wise probability distributions for the CC and its back-
ground, �
 � ��
��� � � � ��; � � 	, are estimated during the
segmentation process. To separate ��� and ���, the mixed empirical
distribution of all the voxel intensities is approximated with a linear
combination of discrete Gaussians (LCDG)1.

1A discrete Gaussian (DG) �� � ������� � � � �� with � � ��� ��� is
de ned [18] as ������ � ����� ��	������� ��	� for � � 
� � � � ��� �,
������ � �����	�, ��� � 
��� � 
 � ���� � 
�	� where ����� is the
cumulative Gaussian function with the mean � and the variance �� .

In this case the LCDG has two dominant positive DGs that rep-
resent modes associated with the object (i.e. CC) and background,
respectively, in the empirical intensity distribution for the MRI to be
segmented. To approximate more closely this distribution, the LCDG
also contains a number of positive and negative subordinate DGs:

�
����� �

���
��

�����������	
���
��

����������� (2)

where the index � � ��� �� speci es whether the DG is positive or
negative, �� is the number of such components, and ��� and ���

denote the weight and parameters of each individual DG ����� ; � �
�� � � � � ��, respectively. The LCDG of Eq. (2), including the numbers
�� and �� of its components, is identi ed using our previous EM-
based algorithm introduced in [18].

2.3. Probabilistic model of the CC shape

Most of the recent works on image segmentation use level set based
representations of shapes: an individual shape is outlined by a set of
boundary pixels (or voxels) at the zero level of a certain distance func-
tion, and a given shape is approximated with the closest linear combi-
nation of the training shapes. The main drawback of this representation
is that the space of signed distances is not closed with respect to linear
operations. As a result, linear combinations of the distance functions
may relate to invalid or even physically impossible boundaries.

To circumvent this limitation, the probabilistic 3D CC shape
model � � � 
 
 where ���� 	� 
� is the empirical probability that
the voxel ��� 	� 
� belongs to the CC is learned from the co-registered
training MRI. Such a prior is constructed by co-aligning the training
set of MRI by a rigid 3D registration using mutual information as sim-
ilarity measure [19], segmenting the CCs by hand from the aligned set,
and counting how many times each voxel ���� 	� 
� was segmented as
the CC.

2.4. Segmentation algorithm

In total, the proposed CC segmentation is obtained by the following
processing steps:

1. Perform an af ne alignment of a given 3D MRI to an arbitrary
prototype CC from the training set using mutual information as
a similarity measure.

2. Estimate the conditional intensity model � ����� by identify-
ing the bimodal LCDG.

3. Use the intensity model found and the learned probabilistic
shape model to perform an initial segmentation of the CC, i.e.
to form an initial region map.

4. Use the initial region map to identify the MGRF model � ���
of region maps and update the conditional intensity model
� �����.

5. Perform the nal Bayesian segmentation of the CC in accord
with the updated joint MGRF model � �����.

3. CENTERLINE EXTRACTION FROM THE CC

The problem of extracting the centerline connecting splenium (e.g. the
point � in Fig. 1(a)) with rostrum (the point �) can be formulated as
a minimum-cost problem: nd the path that minimizes the cumulative
cost of traveling from the starting point � to the destination �. As
de ned in [20], if� ��� 	� 
� is a cost function at any location ��� 	� 
�
inside the CC then the minimum cumulative cost at the location � �
���� 	�� 
�� is

� ��� � ���
��	

��
�

� �������� (3)
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where� is the path length and��� is a set of all possible paths linking
� to� such that���� � � and ���� � � are the starting and ending
points of each path ���� � ��� . The minimum cost path solving
Eq. (3) also satis es the solution of the Eikonal equation:

��� ��� 	� 
��� ��� 	� 
� � � (4)

where � ��� 	� 
� is the time at which the front evolving from the point
� crosses the point ��� 	� 
�, and � ��� 	� 
� is the speed function.

We propose a new algorithm to extract the centerline of the 3D CC
based on solving Eq. (4):

1. Find the boundary of the segmented CC by estimating its 3D
edges (see Fig. 1(b)).

2. Find the normalized minimum Euclidian distance ���� 	� 
�
from every inner CC point ��� 	� 
� to the CC boundary
(Fig. 1(c)) by solving Eq. (4) using the fast marching level
sets at the unit speed function, � ��� 	� 
� � � [21].

3. Extract points located on the 3D centerline of the CC as follows:

(a) Pick any splenium point as a starting point, �.

(b) Propagate an orthogonal wave from the point � by solv-
ing Eq. (4) using the fast marching level sets at the speed
function � ��� 	� 
� � ��������� 	� 
�� (Fig. 1(d)).

(c) Track the point with the maximum curvature for each
propagating wave front (Fig. 1(e,f)), this point being con-
sidered at any time as corresponding to the starting point
�.

(d) The point � at which the maximum curvature point of
the propagating wave hits rostrum of the CC is selected
as the end point of the centerline.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Steps of the proposed centerline algorithm illustrated by the
saggital 2D cross-sections of the 3D CC (a), estimated 3D CC edges
(b), normalized distance map (c), orthogonal wave propagated from
the point � (d), extracted centerline (e), and the 3D visualization of
the extracted centerline (f).

4. CYLINDRIC MAPPING TO EVALUATE CC VARIABILITY

We reveal differences between the autistic and normal CC by using
cylindric transformation. Before applying the cylindric transfor-
mation, the extracted 3D CC is re-sliced by generating planes that
are orthogonal to and equidistant along the centerline as shown in
Fig. 2(a,b). The re-slicing transforms 3D coordinates ��� 	� 
� of
the voxels associated with each slice  into speci c new coordinates
��� �� � where ��� �� are the 2D coordinates on the corresponding
slicing plane . A boundary point ��� �� of each slice  is related to
the surface of a cylinder with a xed radius � as shown in Fig. 3. The
recti ed centerline of the CC is superposed onto the cylinder axis.
Polar coordinates ��� �� of the boundary point ��� �� � with respect to
the slice center ���� ��� �, being the trace of the centerline:

� �
�
��� � ��� 	 ��� � ���
 � � ����

�
� � ��

�� ��

�
(5)

associate the point ��� �� � � ��� �� � with the point ��� �� � on the
cylindric surface. The resulting distribution of the radii � over this
surface represents the segmented CC.

(a) (b)

Fig. 2. 2D (a) and 3D (b) illustrations of re-slicing.

Fig. 3. The proposed cylindric mapping: a cross-section of the re-
sliced CC (a), the CC cross-section mapped onto a circle (b), placing
the circle onto the corresponding location in the cylinder (c).

5. EXPERIMENTAL RESULTS AND CONCLUSIONS

The proposed approach has been tested on in-vivo data collected from
17 autistic subjects aged 16 to 22 years, and a group of 17 controls who
match for gender, age, educational level, socioeconomic background,
handedness, and general intelligence. All the subjects are physically
healthy and free of history of neurological diseases and head injury.
Brie y, all the subjects have exactly the same psychiatric conditions.
All images were acquired with the same 1.5T MRI scanner (GE, Mil-
waukee, Wisconsin) with voxel resolution ������������ mm� using
a T1 weighted imaging sequence protocol. The “ground truth” diag-
nosis to evaluate the classi cation accuracy for each patient was given
by clinicians.

Normal Subjects

Autistic Subjects

Fig. 4. 2D visualization of the segmented CC.

The results of the proposed CC segmentation algorithm are illus-
trated in Fig. 4, and Table 1 shows comparative results for the 15 data
sets which are not used in the training with the known ground truth
(manually segmented by an expert). The differences in the mean er-
rors between the proposed segmentation, the level-set shape based ap-
proach of Tsai et al. [22], and ASM segmentation [23] are statistically
signi cant according to the unpaired �-test (the two-tailed value � is
less than 0.0001).

Figures 5(a) and 5(b) present the average cylindrical maps for 17
normal subjects and 17 autistic subjects. As shown in Fig. 5(c) some
locations in these maps differ signi cantly (at the 95% con dence in-
terval) for the normal and autistic subjects. The inverse cylindrical
mapping outlines the signi cant areas on the average CC of normal
subjects (see Fig. 6). These areas show that signi cant differences (at
the 95% con dence interval) exist in the four anatomical divisions of
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Table 1. Accuracy of our segmentation on 15 data sets in comparison
to the level sets based segmentation in [22] and the active shape model
(ASM) in [23].

Algorithm

Our [22] [23]
Minimum error, % 0.11 4.50 8.50
Maximum error, % 1.87 11.8 19.10
Mean error, % 0.97 5.11 10.13
Standard deviation,% 1.07 3.10 9.10
Signi cant difference, P-value 0.0001 0.0001

the CC, namely, in splenium, rostrum, genu, and body of the CC. Fig-
ure 6 demonstrates that the CC body for autistic subjects is thinner
than for normal subjects.

In total, our preliminary results suggest that the proposed approach
can detect signi cant differences in the four anatomical divisions of the
CC. These ndings lead towards an ef cient non-invasive computer-
assisted system for diagnosis of autism. In our future work, we aim
at early diagnosis of autism by carrying out our procedure on young
children and testing the potential of revealing their CCs’ signi cant
differences in detecting autism. Also, different brain structures will
be investigated in order to quantitatively characterize the development
and temporal changes of an autistic brain.

(a) (b) (c)

Fig. 5. Average cylindric maps of normal (a) and autistic (b) subjects and areas
(c) of the 95%-signi cant difference between normal and autistic subjects.

Fig. 6. Color-coded anatomical differences between the CC for normal and
autistic subjects: the common parts (gray), parts that exist in normal and do not
exist in autistic subjects (blue), and parts that exist in autistic and do not exist
in normal subjects (pink).
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