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Abstract

Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two
properties are obviously the result of the brain development that goes through local cellular and molecular interactions
which have important consequences on the global shape of the cortex. Hypotheses to explain the convoluted aspect of the
brain are still intensively debated and do not focus necessarily on the variability of folds. Here we propose a
phenomenological model based on reaction-diffusion mechanisms involving Turing morphogens that are responsible for
the differential growth of two types of areas, sulci (bottom of folds) and gyri (top of folds). We use a finite element approach
of our model that is able to compute the evolution of morphogens on any kind of surface and to deform it through an
iterative process. Our model mimics the progressive folding of the cortical surface along foetal development. Moreover it
reveals patterns of reproducibility when we look at several realizations of the model from a noisy initial condition. However
this reproducibility must be tempered by the fact that a same fold engendered by the model can have different topological
properties, in one or several parts. These two results on the reproducibility and variability of the model echo the sulcal roots
theory that postulates the existence of anatomical entities around which the folding organizes itself. These sulcal roots
would correspond to initial conditions in our model. Last but not least, the parameters of our model are able to produce
different kinds of patterns that can be linked to developmental pathologies such as polymicrogyria and lissencephaly. The
main significance of our model is that it proposes a first approach to the issue of reproducibility and variability of the
cortical folding.
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Introduction

The development of the human brain from the early gestational

weeks to the buckling of the first folds at around 20 weeks follows a

narrow pathway between determinism and pure randomness. On

the one hand normal adult individuals offer quite similar - from a

pure qualitative and descriptive point of view - folding structures:

gyri and sulci. On the other hand we observe morphological

variabilities between different brains [1]. This variability can reach

extreme states in the case of rare abnormalities of the developing

brain - such as lissencephaly, polymicrogyria or corpus callosum

agenesis. The origin of variability remains an unclear and

challenging issue [2] but it is, however, obvious that environmental

factors have a deep impact on the sulcal and gyral pattern since even

monozygotic twins exhibit important anatomical differences [3].

Folding or buckling are very general processes in nature and

among living organisms. Especially one of the most studied step in

the morphogenesis of metazoans is gastrulation which corresponds

to a symmetry breaking of the spherical embryo and an

invagination. The origin of this folding remains unknown even if

mechanical factors are undoubtedly implied [4]. More disconcert-

ing, it is shown in [4] that different mechanical actions

(constriction, contraction, traction, gel swelling) can lead to similar

shapes of the sea urchin primary gastrula.

In these conditions it raises the issue of realistic modeling of far

more complex buckling processes such as the gyrification of

mammal brains. In this regard it is important to inspect carrefully

previous models of gyrification.

Le Gros Clark [5] raises first that the cortex grows by surface

expansion rather than by increasing its thickness. He suggested

that the expansion of the brain is constrained by the skull and

basal ganglia and that compressive stresses cause sulcation.

However experiments on sheeps whose large quantities of cortical

and subcortical structures were ablated at the end of cellular

migration revealed, at term, gyri and sulci of normal size and

configuration [6]. This model and its refutation give us a way to

categorize the hypotheses on the gyrification depending on

whether they involve intra- or extra-cortical processes, in other

terms intrinsic or extrinsic.

In the same extra-cortical point of view a recent and very

popular model considers that the folding of the brain takes its

origin in the mechanical tensions produced by the white matter

fibers [7]. This model has been recently tested in [8] with a finite

element model of cortical folding.

At the opposite there are numerous hypotheses arguing that the

cortical folding has intrinsic origins. In [9] the differential growth

of cortical layers causes sulcation and can explain anomalies of

folding such as polymicrogyria and lissencephaly in terms of

different mechanical properties of cortical tissues. Other models

use mechanical hypotheses on the cortex such as elasticity or

plasticity [10], [11]. In particular in [11] the authors suggest that

the cortical folding is only a consequence of its growth modulated
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by anisotropies in mechanical or geometric properties. Even if this

last model reproduces several characteristics of a growing cortex, it

remains however implemented in 2D and does not explain

completely where the anisotropies come from.

In the intrinsic origins of folding we encounter also purely

morphogenetic hypotheses in which cortical convolutions are

under genetic control [12]. In [13] it is proposed that the different

cytoarchitectonic areas are provided by a protomap, that is a layer

of predetermined neuronal units.

In the next part we will see in detail another hypothesis for the

cortical folding which is based on Turing instabilities [14], [15].

We will show that these approaches of brain development can also

be linked to the sulcal roots model proposed in [2]. These last

authors offer indeed a descriptive model of the human sulcation

based on the concept of sulcal roots that are elementary atoms

around which the brain folding organizes itself. This concept has

strong similarities with the sulcal pits one [16], [17]. Sulcal pits

correspond to the deepest points of the sulci whose reproducibility

has been demonstrated rigourously in [17]. We will see that initial

conditions of the reaction diffusion process can have an

interpretation in terms of sulcal roots or sulcal pits.

In this article we investigate the origin of anatomical variability

from the early development and we propose a phenomenological

model of the folding which is based on the putative existence of

Turing morphogens. After recalling briefly some mathematical

aspects of the model, we present the numerical schemes used for

implementing the equations on a surface and for the deformation of

the surface. We show some qualitative and quantitative results of the

model. In particular we link sulcal pits maps to the average folding

patterns across several realizations of a same noisy initial condition.

And we study the variability of our model and demonstrate that it

can lead to different modes of variability of one sulcus.

Model

Cartwright [14] suggested first a similarity between labyrinthine

Turing patterns and brain gyri. He proposed to model the cortical

anatomy as obtained by a reaction-diffusion mechanism and more

especially by Van Der Pol-Fitz Hugh Nagumo equations. The

mechanism will correspond to axonal pathfinding with diffusing

chemicals that activate axon growth or inhibit it [18].

Very recently the Global Intermediate Progenitor (GIP) model has

been proposed to explain the appearance of transversal or sectorial

sulci following the Intermediate Progenitor hypothesis [19]. The GIP

model is based on the BVM system of reaction-diffusion equations

[20] that mimics the patterning of the subventricular zone.

We aim at extending the analogy first formulated by Cartwright

and the GIP model using a system of reaction-diffusion equations

that will modify the surface on which the equations take place.

Namely the reaction diffusion system models the non-linear

interaction of two morphogens U and V or in other terms growth

factors. These growth factors are characterized by the fact that they

will tend to deform the surface on which they evolve. We can note

that this approach has been previously used in the case of plant

growth [21] [22] and that reaction-diffusion equations on surfaces

have also been adopted to apply textures on meshes [23] [24].

In our model initial conditions of the reaction-diffusion

equations have strong similarities with the sulcal roots described

in [2], that are the initial seeds of the folding process.

Our choice of the reaction-diffusion equations differs from the

one of Cartwright and the GIP model since we have adopted the

Gray-Scott model:

LtU~d1DUzF (1{U){UV 2 ð1Þ

LtV~d2DVzUV 2{(Fzk)V ð2Þ

which exhibits a high number of patterns for differents values of F
and k [25].

The mathematical analysis of the model has been previously

conducted in [26]. As in [15] we have adopted a phenomenolog-

ical approach and it is interesting to note that our model and the

BVM one differ only by a quadratic term. Linear and cubic terms

in the kinetic reactions are present in the two models.

Surface deformation
Following ideas of [21] and [22], we suppose that the evolution

of the studied surfaceM is driven by the morphogens U and V . U
is the inhibitor and V the activator. In mathematical terms we

have that

LM
Lt

~h(U ,V )N ð3Þ

where N is the normal to the surface and h a function of the two

morphogens. The simplest case for h that we have adopted in the

following is a linear function of one morphogen:

h(U ,V )~KV

where K is a parameter in R.

Since the surface on which evolve the morphogens is modified

with time, we have to adapt the equations (1) and (2) to take into

account the geometric changes. The problem of reaction-diffusion

on growing domains has been well-studied in the past years. It

leads generally to add convective and dilution terms to LtU (LtV
respectively) that can be combined in div(aU) where

a(M,t)~
dM

dt
represents the flow velocity of the growing surface

[27]. However this result does not directly apply to surfaces and we

have to refer to [28] to see the influence on the curvature changes

on the reaction-diffusion equations.

The model proposed in [28] consists in adding a term reflecting

the modification of the surface metric along time. If the surface

Mt is parameterized by M(r,s,t) then equations (1) and (2) read:

Author Summary

The anatomical variability of the human brain folds
remains an unclear and challenging issue. However it is
clear that this variability is the product of the brain
development. Several hypotheses coexist for explaining
the rapid development of cortical sulci and it is of the
highest interest that understanding their variability would
improve the comparison of anatomical and functional data
across cohorts of subjects. In this article we propose to
extend a model of cortical folding based on interactions
between growth factors that shape the cortical surface.
First the originality of our approach lies in the fact that the
surface on which these mechanisms take place is
deformed iteratively and engenders geometric patterns
that can be linked to cortical sulci. Secondly we show that
some statistical properties of our model can reflect the
reproducibility and the variability of sulcal structures. At
the end we compare different patterns produced by the
model to different pathologies of brain development.

A Model of Human Brain Development
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LtUzULt log
ffiffiffiffi
gt
p

~d1DMt UzF (1{U){UV2 ð4Þ

LtVzVLt log
ffiffiffiffi
gt
p

~d2DMt VzUV 2{(Fzk)V ð5Þ

where DMt stands for the Laplace-Beltrami operator.
ffiffiffiffi
gt
p

is the

determinant of the metric g associated to the surface, that is:

ffiffiffiffi
gt
p

~
D
D
D
g(LrM,LrM) g(LrM,LsM)

g(LrM,LsM) g(LsM,LsM)
D
D
D

In the following we will use M instead of Mt and D instead of

DMt for simplicity reasons but one has to remember that the

surface on which the equations are defined is changing along time.

Numerical implementation
Since we work on discrete meshes we have used a finite element

method to discretize the linear terms in the equations 1 and 2.

First we derive a weak formulation of the system on

L2(M)~fW ,M?R=

ð
M

W (x)2dxvz?g

with non-linear terms included in f using a test function W :

VW [ L2(M),

ð
M

WLtUdmz

ð
M

WULt log
ffiffiffiffi
gt
p

dm

~d1

ð
M

WDUdmz

ð
M

Wf (U ,V )dm

Then, integrating by part the Laplacian term, as in [29], we get:

VW [ L2(M),

ð
M

WLtUdmz

ð
M

WULt log
ffiffiffiffi
gt
p

dm

~{d1

ð
M

g(+U ,+W )dmz

ð
M

Wf (U ,V )dm

where g is the metric associated to the Riemannian manifold M.

Next we work on a discrete tessellation Mh of the surface M
composed of N vertices. We define N functions wi : p [Mh?R

which are continuous piecewise affine, with the property to be

equal to 1 at node i and 0 at all other triangle nodes. They are the

basis functions for the approximation on the functional space of

finite dimension N. So any function U continuous piecewise affine

reads: U(t,x)~
P

i Ui(t)wi(x).

The weak formulation becomes:

Vj [ ½1,N�,
X

i

dUi(t)

dt

ð
Mh

wj(x)wi(x)dx

z
X

i

Ui(t)

ð
Mh

wj(x)wi(x)Lt log
ffiffiffiffi
gt
p

dx

~{d1

X
i

Ui(t)

ð
Mh

g(+wi,+wj)dx

z

ð
Mh

wj(x)f (
X

i

Ui(t)wi(x),
X

i

Vi(t)wi(x))dx

It is possible to treat the non-linear term with the following

approximation as in [30]:

ð
Mh

wj(x)f (
X

i

Ui(t)wi(x),
X

i

Vi(t)wi(x))dx

^
ð
Mh

X
i

f (Ui(t),Vi(t))wi(x)wj(x)dx

~
X

i

f (Ui(t),Vi(t))

ð
Mh

wi(x)wj(x)dx

then discretizing implicitly and explicitly in time between tn and

tnz1~tnzDt and writing with matricial expressions:

½A�½U �
nz1

{½U �n

Dt
zd1½+�½U �nz1

z½B�½U �nz1
z½A�f (½U �n,½V �n)~0

with

½A�i,j~
ð
Mh

wj(x)wi(x)dx, ½+�i,j~
ð
Mh

g(+wi,+wj)dx

½B�i,j~
ð
Mh

wj(x)wi(x)
log

ffiffiffiffiffi
gn
p

{ log
ffiffiffiffiffiffiffiffiffiffi
gn{1
p

Dt
dx:

and by definition

f (½U �n,½V �n)i~f (Ui(tn),Vi(tn))

So we can deduce:

½U �nz1
~(½A�zd1Dt½+�zDt½B�){1½A�(½U �nzDtf (½U �n,½V �n))

On each triangle we have

ð
T

wi(x)wj(x)dx~

A(T)

6
if i~j

A(T)

12
if i=j

8>><
>>:

ð
T

+wi+wjdx~
hi

EhiE2
: hj

EhjE2
A(T),

where A(T) is the area of triangle T and hi is the height of triangle

T from vertex i.

At last we need to compute
ffiffiffiffiffi
gn
p

. This can be performed on

each triangle T~½A,B,C� from the expression of the metric tensor

g [31]:

g~
DDABDD2 AB:AC

AB:AC DDACDD2

 !

Remarks. To be exact we should take into account the fact

that the finite elements vary along time or in other terms that the

mass matrix ½A� depends on the evolving surface. This point is

addressed in [32] but it is not possible to apply this framework in

our case since we should know the geometry of the mesh at time

nz1 to compute the mass matrix ½A�nz1
which is not the case

A Model of Human Brain Development
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because the mesh at time nz1 is deduced from ½V �nz1
. However

the authors in [32] propose an equivalent weak formulation in

which the velocity term is present. In our case the dilution term

replaces the velocity term. Moreover the expression of log
ffiffiffiffi
gt
p

should involve log
ffiffiffiffiffiffiffiffiffiffi
gnz1
p

{ log
ffiffiffiffiffi
gn
p

but for the same reason as

previously we have not the knowledge of gnz1 at time n.

For the surface deformation step, we translate equation (3) by

simply modifying each vertex vn
i :

vnz1
i ~vn

i zDt h(Unz1
i ,Vnz1

i )Nn
i ð6Þ

Although this incremental procedure can rapidly lead to abnormal

deformation of the original mesh, we have used triangle

refinements in order to prevent this issue. When the area of a

triangle exceeds two times the averaged area of the triangles of the

original mesh we simply divide the triangle in four triangles

constructed from the three midpoints of each side Fig. 1.

In our implementation we do not prohibit self-intersection which

would increase considerably the computation time. However we

can say that we escape this issue by not solving for too long time but

also taking a parameter K for the deformation along the normal not

too large. By this we mimic also the real brain expansion that is not

confronted to the problem of gyri collision.

Results

Labyrinthine patterns
First we can model the growth of a normal brain with the value

F~0:04, k~0:06, d1~0:2, d2~0:1, K~0:0005 and Dt~2. The

initialization corresponds to a slight perturbation of the stable

equilibrium U~1,V~0 in a position of a sphere composed

of 2562 vertices. This perturbation consists of a broad line with

U~
1

2
zn and V~

1

4
zn where n is white noise of amplitude

0:001 (see first picture on Fig. 2).

Note that the evolution specified by the coupled reaction-

diffusion equations and the surface deformation leads to a

progressive folding of the initial sphere on Fig. 2. It is possible to

extract an order parameter at each time step which consists of the

number of folds or sulci (see Fig. 3 left). This index is defined from

the curvature map of the surface. At each vertex of the mesh we

compute the mean curvature following [33]. Once this curvature

map has been obtained we compute automatically the number of

sulci, that is, the number of connected components whose curvature

is inferior to 0. For this we use a region growing algorithm: we start

from a vertex whose curvature is inferior to 0 and build a connected

region of vertices whose curvature is inferior to 0. We repeat this

procedure until there are no more initial seeds.

We can observe on Fig. 3 that the number of sulci is equal to 0

on the interval ½0 : 1250� then increases quasi linearly on

½1250 : 3300� and reaches a sort of plateau on ½3300 : 4000�.
Moreover we propose a simple way to characterize the spatial

stability of the folds along time. In other terms we demonstrate

that the position of folds formed at different time instants remains

relatively stable. We extract a map of the curvature k(x,t) at each

time instant t. And we define a thresholded map M by

M(x,t)~1k(x,t)v0. This map depends on the mesh on which it is

defined so we interpolate it on the final mesh (which has the largest

number of vertices). We note that we use a smoothed version of the

meshes in order to avoid problems of interpolation. The

smoothing of the folded meshes has been performed by using an

iterative process that consists, at each iteration, to replace a node

of the mesh by the mean of its neighbors. So the maps M are

defined on the same domain and we can compute an average map

M̂M(x)~

Ð
t
M(x,t)dtÐ

t
dt

Intuitively this quantity represents the proportion of the temporal

interval during which a fold is present at each position x. This

yields the map shown on Fig. 4.

We can see on this figure that the average map M̂M is not

uniform but has patterns. In other terms we can observe a certain

stability of the folds along time. In particular there are parts of the

initial sphere that never belong to a fold. We note that the

maximum of M̂M is not 100% since there are no folds during the

temporal interval ½1 : 1250� which represent 23% of the full

temporal interval on which the simulation has been performed.

Influence of noise
In this part we investigate the influence of noise in the spatial

position of the folds. In particular we aim at demonstrating that

the reaction diffusion mechanism is able to produce reproducible

folds at certain specific locations but can also engender variability

at other locations. For this we simulate 50 realizations of the

folding process from different noisy initial conditions U~
1

2
zn

and V~
1

4
zn. We consider the curvature maps ki and the

thresholded maps Mi at time t~4000 and interpolate them on the

same smoothed mesh. Then we sum the binary thresholded maps

in order to see areas of reproducibility:

X50

i~1

Mi(x,4000)

On Fig. 5 left, we can clearly observe that the sum of the binary

maps representing the averaged pattern of folding have a spatial

structure and do not organize randomly. In particular we notice a

big longitudinal fold that comes across the surface and seems to be

very reproducible among the 50 simulations. Moreover we note

that other smaller reproducible folds are positioned along the main

fold on both sides. This figure echoes the average cortical surface

Figure 1. Mesh refinement procedure. When the area of a triangle
ABC exceeds two times the averaged area of the triangles of the
original mesh we divide the original triangle in four triangles
constructed from the three midpoints A9,B9,C9 of each side. Moreover
we divide each of the three triangles ABD, ACF, BCE in two triangles.
doi:10.1371/journal.pcbi.1000749.g001
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of 222 hemispheres that we have displayed on Fig. 5 right. This

surface is the one described in [34] and has been visualized with

anatomist [35]. The white arrow represents the cingulate sulcus

that is comparable to our main fold in the 50 simulations while the

three white stars show secondary folds that are parts of the para-

cingulate sulcus and that we can link to the smaller reproducible

folds of our model.

On Fig. 6 we illustrate however the variability of the main fold

through three different scenarios of buckling. On the first line, left

figure, we can see a mode that follows the main distribution

Figure 2. Evolution of the Gray-Scott model coupled to surface deformation. The pictures correspond to time instants 1, 1000, 2000, 3000,
4000 of the iteration process. The last graph indicates the evolution of surface area in the successive meshes.
doi:10.1371/journal.pcbi.1000749.g002

Figure 3. Evolution of the number of folds along time in 50
simulations. The blue line represents the average number across 50
simulations and the blue area around represents the standard
deviation.
doi:10.1371/journal.pcbi.1000749.g003

Figure 4. Stability of folds in time. Time-average map M̂M
representing the proportion of the temporal interval during which a
fold is present at position x. The values goes from 0 (gray) to 67%
(yellow).
doi:10.1371/journal.pcbi.1000749.g004

A Model of Human Brain Development
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previously described on Fig. 5 that is, in which the main fold is in

one part. On the right is shown a left hemisphere of a real brain

displayed with anatomist [35] on which the superior temporal

sulcus (pink) is in one part. On the two following lines we represent

two other modes for the main fold, in two and three parts

respectively, and their correspondence on real anatomies with a

superior temporal sulcus (pink) in two and three parts respectively.

More generally Fig. 7 shows the different modes of variability of

the main fold among the 50 simulations. In 6% of cases it is

composed of one segment, in 30% of two segments, in 58% of

three segments and in 6% of four and five segments. The

determination of connected components has been done by visual

inspection rather than by automatic methods that tend to increase

artificially the number of segments in the main fold.

Phase diagram and pathologies of gyrification
It is possible to represent directly the influence of one or several

parameters of the model (F and k in our case) on the qualitative

properties of the patterns. We vary the parameters k and F linearly

over a spatial domain from 0:04 to 0:07 and 0:01 to 0:09 respectively

with steps of 0:005 which yields 28 couples (F ,k). On Fig. 8 we

display the surfaces obtained at time t~4000. The color represents

the curvature of these surfaces (red: positive curvature, blue: negative

curvature). Note that the star-like patterns obtained with values

F~0:05, k~0:025:::0:05 and F~0:055, k~0:03:::0:05 are just an

artifact corresponding to the structure of the spherical mesh.

As suggested by [14] it is possible to link the qualitative nature of

the obtained patterns to different modes of brain development, i.e

in particular to pathologies or anomalies (see Fig. 9).

So we can see that for F~0:05 and k~0:05 no patterns

emerge. This state appears similar to lissencephaly, a pathology in

which the brain is smooth and offers no gyri or sulci. The values

F~0:04 and k~0:06 might correspond to a normal brain with

stripe-like patterns of gyrification. At last the range F~0:03 and

k~0:06 show spot-like patterns which make one think of

polymicrogyria.

Discussion

Our model extends the initial proposal of Cartwright in [14]

where no geometrical deformation of the cortical surface was

proposed. We have demonstrated that it was possible to combine a

reaction diffusion mechanism to a surface deformation in order to

produce a model of the gyrification process. This approach is not

Figure 5. Reproducibility of the model compared to real data. Top: Sum of the thresholded maps Mi converted in percentage. Areas of
higher percentage (yellow) correspond to domains of high reproducibility of the folding patterns. The white arrows indicate the three parts of the
main fold. Bottom left: Average surface of 50 simulations taken at time t = 4000 and the corresponding curvature in color. The white arrows indicate
the three parts of the main fold. Bottom right: Average cortical surface of 222 hemispheres taken from experimental data. The white arrow indicates
the cingulate sulcus while the four white arrows show secondary folds (paracingulate sulcus). In these three figures the white stars indicate the
position of secondary folds.
doi:10.1371/journal.pcbi.1000749.g005

A Model of Human Brain Development
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new since it has been applied to model plant growth [21] but it

seems to be the first to tackle the very old and controversial

problem of brain folding in terms of reaction diffusion coupled to

surface deformation. However the question about the origin of the

morphogens used in our model remains open. In [14] the

activation/inhibition process is supposed to model the mechanical

tensions due to white matter fibers so the morphogenetic approach

becomes indirect and extrinsic. On the contrary we prefer to view

the folding process as the result of an intrinsic phenomenon,

promoted by morphogens that decide the cytoarchitechtony.

Different cytoarchitechtonic areas would correspond to different

gyri and the limits between areas to sulci. This idea, suggested one

century ago by Broadmann, has been recently pointed out in [36].

Moreover in [15], the GIP model supposes that the morphogens

responsible for the patterning of subventricular zone could be

some specific genes such as Pax6, Ngn2, Id4. Our model supports

this hypothesis since mutations in the Pax6 gene for instance can

be responsible for polymicrogyria [37], so the parameters F and k
of the model could reflect different gene expression of Pax6. We

Figure 6. Three modes of variability and their correspondence on real anatomies. First column: Three different modes of variability for the
main fold observed on Fig. 5. We can see that the main sulcus, in one part at top left, is interrupted by a gyrus surrounded in white at middle left, and
interrupted by two gyrus at bottom left. Second column: Two different modes of variability for the superior temporal sulcus on experimental data.
Top: the superior temporal sulcus (STS) in pink is in one part. Middle: the STS is in two parts. Bottom: the STS is in three parts.
doi:10.1371/journal.pcbi.1000749.g006

Figure 7. Different modes of the main fold. The histogram shows
the different modes - i.e. the number of connected components - of the
main fold.
doi:10.1371/journal.pcbi.1000749.g007
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can also mention an alternative scenario for pattern formation that

has been recently exposed in [38] and does not necessarily

require the interaction of a long range inhibitor (U ) and a short

range activator (V ) as in our case. In [38] an activator-activator

mechanism combined with domain growth can also lead to pattern

formation.

Figure 8. Phase diagram of the Gray-Scott model. The two axes correspond to the two parameters F and k used in the Gray-Scott model. The
color indicates the curvature of the surfaces (red: positive curvature, blue: negative curvature) obtained at time t~4000.
doi:10.1371/journal.pcbi.1000749.g008

Figure 9. Patterns of folding and pathologies of development. First line: Growth patterns for different values of (F,k), respectively (0.04,0.06),
(0.03,0.06) and (0.05,0.05). Second line: the corresponding brain patterns: normal, polymicrogyria, lissencephaly.
doi:10.1371/journal.pcbi.1000749.g009
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In our model we investigate also the variability of folding along

the development of one individual and across several individuals -

that is several realizations of the model. First we can see that for an

unique development the position of the sulci remains stable along

time. This result may seem trivial but is required for our model to

produce definite patterns of gyrification that can be compared

between different realizations of the model. Secondly the study of

folding variability among 50 random realizations of the model

reveals two important characteristics. The folding does not

organize randomly even if we add noise to the initial condition

of the reaction diffusion process. We have shown on one example

that a main structure emerges that is strongly reproducible among

several simulations. We can find a direct analogy between this

main fold and the primary folds described in the literature [1],

[39]. Primary folds are indeed characterized by their early time of

appearance and their reproducibility across subjects. If we follow

the comparison we can link the smaller structures found on Fig. 5

to the secondary or tertiary folds that are more posterior and

variable than the primary ones. Our average map on Fig. 5 left

echoes the average cortical surface of 222 hemispheres displayed

on Fig. 5 right. This average surface has been computed in [34]

and used also to represent an average map of sulcal pits density in

[17]. In particular the main fold found on our simulations can be

compared to the cingulate sulcus while the smaller folds around

evoke the small pits of the paracingulate sulcus.

Moreover we have shown that in spite of its strong

reproducibility the main fold could be broken in two separate

parts by a gyrus. This result echoes previous studies [39], [40]

where it is shown that some primary sulci reveal variability in their

topology. For instance in [40] the superior temporal sulcus is

continuous in one third of the cases (36% on the left and 28% on

the right), in two segments in 48% on the right and 32% on the

left. The gyri that separate our main structure in two or three parts

could also be interpreted in terms of ‘pli de passage’, which is a

fold that can divide a sulcus in two sulci or just be buried at the

bottom of a sulcus [2].

On a more theoretical point of view, our results on the

reproducibility of the folds seem to confirm the impact of growth

domain on the robust selection of patterns as it has been previously

shown in [41] [42]. In our study there remains however some

points that will require some theoretical developments, in

particular about the existence of Turing instabilities that occur

in the simulations. Some results have been obtained recently for

isotropic domain growth or specific growth function [43] [38].

In conclusion we have proposed an extended framework for

modelling the cortical folding. It is based on a system of coupled

reaction-diffusion equations defined on a surface that evolves

through the action of morphogens. We show that for some

parameters the model gives rise to geometric patterns that can be

related to cortical sulci. We also demonstrate that under the effect

of noise the system yields morphological variability in these

cortical structures. Moreover changing slightly the values of the

parameters of the model can have an important influence on the

nature of the created patterns which suggest a link toward

pathologies of the brain development such as lissencephaly or

polymicrogyria. In future developments we plan to investigate the

difficult issue of estimating good values of parameters with respect

to a given sequence of cortical surfaces across development.
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