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Abstract
Vascular registration is a challenging problem with many potential applications. However,
registering vessels accurately is difficult as they often occupy a small portion of the image and
their relative motion/deformation is swamped by the displacements seen in large organs such as
the heart and the liver. Our registration method uses a vessel detection algorithm to generate a
vesselness image (probability of having a vessel at any given voxel) which is used to construct a
weighting factor that is used to modify the intensity metric to give preference to vascular
structures while maintaining the larger context. Therefore, our proposing method uses fully data-
driven calculated weights and needs no prior knowledge for the weight calculation. We applied
our method to the registration of serial MRI lamb images obtained from studies on tissue
engineered vascular grafts and demonstrate encouraging performance as compared to non-
weighted registration methods.
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1. INTRODUCTION
Vascular registration is a critical problem in the quantitative analysis of serial images of
vascular structures. It could be used to detect (via a secondary examination of the growth
patterns from the displacement fields), for example, progressive stenosis in coronary artery
disease and vascular growth in angiogenesis. Our target application is the quantification of
the growth of tissue engineered vascular grafts within the context of congenital heart
disease. Congenital heart disease (CHD) remains a leading cause of death in the newborn
period. The development of tissue engineered vascular grafts is an important potential
treatment for this; however there is a need for the non-invasive methods for the
quantification of vascular growth over time in these tissue engineered grafts. While in
principle, for example, vascular segmentation techniques could be used to measure graft
volume, the definition of the exact location of the ends of the graft (i.e. where it is sutured to
the native vessels) is difficult and can significantly bias the results. Our approach to this
problem relies on (i) computing a non-rigid registration between the initial and subsequent
time points using the method described in this paper, (ii) approximately defining the location
of the graft at time point 1 and (iii) quantifying vascular growth using the integral of the
determinant of the Jacobian of the transformation over the region of the graft, normalized by
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an equivalent measure in the nearby pulmonary arteries which is used to account for animal
growth and hydration state. In this paper we focus on the non-rigid registration part of this
work.

Our early attempts to attack this problem used an implementation of the work of Rueckert et
al. [1]. However, the vessels of interest (the tissue engineered graft and the pulmonary
artery), constitute only a small part of the image and the mutual information metric is
swamped by larger structures such as the heart and the liver. To overcome this problem, we
develop a spatially-weighted mutual information approach which gives higher weight to the
vascular structures without requiring any prior knowledge. The weights are defined
automatically using a measures of vesselness [7] which improves upon earlier work by
Frangi et al. [2].

There is some work in the literature on vascular registration [12,13]. The authors use the
centerlines of presegmented vessels as part of the registration process and hence the method
is critically depended on having an accurate segmentation. Penney et al.[14] perform
vascular intermodal registration using the vessel probability maps directly; we note however
that this work focuses on only rigid registration. Our work also relates to other previous
efforts use variable spatial weighting for registration, dating back to the early optical flow
work of Anandan [3] which used confidence measures for the estimation of the local
weights and the work of Amini et al. [4] in cardiac deformation. This type of idea was later
used within the context of non-rigid registration, e.g. [5]. An alternative approach is to
compute a more-local as opposed to global metric (e.g. the work of Likar et al. [6]) defining
local probabilities as a weighted combination of the probability distribution of a subimage
and the global distribution. Our works differs from these approaches in that we use a spatial
weight based on the significance of the underlying structure as computed using the
vesselness measure. This weighting is imposed at the computation of the joint histogram
itself after which we use a global unmodified mutual information metric [9].

2. METHOD
Our method consists of two steps, as shown in Fig. 1. Given two images from the same
subject (animal) at different time points, we first calculate the vesselness map for each
image using our recently published method [7] which improves upon earlier work by Frangi
et al. [2]. Next the vesselness maps are used as weights in a weighted-NMI FFD registration
method that builds upon earlier work by Rueckert [1,11].

2.1. Weighted nonrigid registration using mutual information
Since its introduction[8] mutual information (MI) has been widely used for medical image
registration. We use the normalized mutual information variant of this metric [9], which
takes the form:

(1)

where IR and IM are the two images, T is the (current estimate of the) transformation and H()
is the image intensity entropy. All three entropy measures are computed based on the joint-
histogram of the two images. In computing the joint histogram Ω(i, j) we introduce a weight
term W (x) to yield the expression:

(2)
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where x is the voxel location, V is the image volume and W(x) is the weight function. Note
that if W (x) = 1 everywhere, this reduces to the conventional definition of the joint
histogram. The weight function W (x) is defined as:

(3)

Here, WR(x) is a weight map depending on the reference image and T (WM (x)) is the weight
map depending on the moving image warped using the current estimate of the
transformation. In “Single” weight mode we use only the reference weight image, whereas
in “Dual” mode we use the sum of the two. The weight images are computed from the
vesselness maps as described in the next section.

2.2. Vesselness Computation and Weight Generation
The vesselness maps are images where the intensity at each voxel corresponds to the
probability of that voxel being part of a vascular structure. Our method for computing the
vesselness maps has been previously published [7]. The end result of this is the vesselness
image VI(x) [2] which has range 0 to 1 and is a measure of the likelihood of having a
vascular structure at location x in the image. Figure 2B is the vesselness in the region of the
pulmonary artery – the original image is shown in Fig. 2A. The weight map is computed
from VI(x) as:

(4)

Here, VI(x) is the vesselness map for image I, Gσ is Gaussian smoothing with filter width σ,
c1 is a scaling factor and c2 is a shift factor of intensity (× denotes multiplication and *
convolution). Standard intensity based registration without weighting effectively uses c1 = 0,
c2 = 1. In our weighted registration, we set c1, c2 with nonzero values in order to leverage
the intensity information everywhere but weigh it more close/inside vessels. In case of
“Single” weight mode we compute the overall weight by using Eq. (4) on the reference
vesselness maps (i.e. the vesselness map computed from the reference image), whereas in
“Dual” weight mode we compute the overall weight by using Eq. (4) on the sum of the
weight images generated from the reference and moving vesselness maps.

In addition to adding a degree of symmetry to the estimation, the “Dual” mode has the
additional benefit of improving the effective signal-to-noise ratio of the vesselness
estimator. `Single” weight mode may fail to pick up all vascular structures as shown in Fig.
2B. By using the dual weight setup, in which we utilize the vesselness of the moving image
in addition to the vesselness of the reference image, we obtain a better estimate of the
vesselness maps by combining the results from the two images – this combination is done
dynamically during the registration using the current estimate of the transformation to warp
the moving weight image to reference space. Fig. 2C shows the combined vesselness
between the reference vesselness and the registered vesselness from the moving vesselness
of Fig. 2A. As an aid to the comparison we show the manually segmented vessel in Fig. 2D.

3. RESULTS
We used in-vivo MRI images from a study of the growth of tissue engineered vascular grafts
in a juvenile lamb model. The tissue engineered grafts were implanted as inferior vena cava
(IVC) interposition grafts, i.e. they replaced part of the native IVC. The imaging protocol
post surgery involved each animal being imaged bimonthly for 6 months. Magnetic
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resonance imaging (MRI) was performed using a Siemens Sonata 1.5 T MR Scanner. 1.5 T
MRI was performed using a 3D MPRAGE acquisition with 25-cm FOV, 1.1 mm slice
thickness, 128 slices, TE=3 ms, TR=24 ms, 2 averages, alpha=45°, 192×256 matrix and
bandwidth=220 Hz/pixel. All images were reoriented so the IVC was parallel to the y axis of
the images; the images were resampled to have dimensions 101 × 256 × 101 and isotropic
voxel size equal to 0.78 mm and centered (manually) approximately on the middle of the
IVC.

Data from 3 lambs and 2–3 timepoints from each lamb (a total of N=12 pairs) are used in
this paper. An expert user manually segmented (painted in) the inferior vena cava (extending
roughly from the heart to the liver) and one of the pulmonary arteries (PA). We use the
overlaps of these segmentations for validation purposes – the manual segmentations play no
role in our algorithm.

We compare 3 algorithms and note that, except for the use of the weight images, these
algorithms use identical preprocessing steps, parameters and implementations (including the
all-important optimization code). The first is the normal unweighted FFD NMI based
method of Rueckert et al. [1] with the “fluid” extensions [11] – which is referred to as “Un-
weighted”. The second method uses simply the vesselness map from the reference image to
generate the weight (“Single”) whereas the final algorithm (“Dual”) uses both the reference
and moving vesselness images which are added to generate the weight at each iteration
using the current estimate of the transformation.

All registrations used the exact same B-Spline FFD model [1] with 5 levels (4.8mm, 2.4mm,
1.2mm, 1.2mm and 1.2mm ) and respective control point spacings (24mm, 12mm, 6mm,
6mm, 6mm) at each level. The transformations are concatenated in the same manner as in
[11]. The weight images were computed from the vesselness images as described by Eq. (4)
using c1 = 100, c2 = 10 and σ = 2 (voxels).

An example is shown in Fig. 3. Here panel A shows the reference image including IVC and
B is the vesselness image calculated from the reference image. We show the result of the
non-weighted registration in C, which is obviously off due to the influence of different
motion/deformation of the heart and the liver nearby. Fig. 3D and E show the result of the
single-weighted registration and the dual-weighted registration, respectively. The result of
the dual-weighted registration looks a little better than that of the single-weighted
registration. Finally Fig. 3F shows the manually segmented objectmap from the original
MRI image (Fig. 3A) for the same region for comparison purpose. Fig. 4 shows the PA
registration result from the same sample as Fig. 3. Fig. 4 also shows that the dual-weighted
registration is superior to the non-weighted registration. Another example is shown in Fig. 5
which combines the both the IVC and PA registration results. For comparison purpose, the
blue line and yellow line delineate the IVC and PA of the reference image, respectively (as
obtained using manual segmentation).

A more quantitative view of the results is presented in Table 1 which shows the comparison
results using the overlap (Dice) as a metric, with the manual segmentations of the IVC and
the PA serving as gold standards. In both cases our weighted registrations (both single and
dual weight modes) are better than the unweighted registration method. We note, that the
dual weighted method shows statistical significant improvements over the unweighted
method for both the IVC and the PA (paired t-test p < 0.05).

4. DISCUSSION AND CONCLUSION
We presented a new fully-automated method for non-rigid vascular registration which uses
spatial weighting within the context of a mutual information metric to optimize the
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registration. Thus, this method uses fully data-driven calculated weights and needs no prior
information for the weight map. We evaluated the proposed method on vascular registration
of 3D MRI lamb images. Our method is a compromise between traditional unweighted
registration methods and methods relying on explicit segmentation (often manual e.g. the
work of Greene et al. [10]) of key organs as constraints. The regions of high importance are
highlighted but the registration process uses the whole of the image information as opposed
to simply segmented structures (e.g. surface registration methods for example) and does not
rely on having an accurate prior segmentation of the vessels (unlike the work in [12,13]).
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Fig. 1.
Block diagram for weighted registration using vesselness.
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Fig. 2.
A. Original MRI image. B. Vesselness image from the reference image. C. Enhanced
vesselness image by adding the reference vesselness with the registered vesselness image
from the moving image. D. Manually segmentation result.
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Fig. 3.
Registration result for inferior vena cava (IVC) in MRI image of lamb. A Reference blood
vessel, B Vesselness image, C Result of non-weighted registration, D Result of single-
weighted registration, E Result of dual-weighted registration, F Manually segmented region
from A.
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Fig. 4.
Registration result for pulmonary artery (PA) in MRI image of lamb. A Reference blood
vessel, B Vesselness image, C Result of non-weighted registration, D Result of single-
weighted registration, E Result of dual-weighted registration, F Manually segmented region
from A.
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Fig. 5.
Registration result for both inferior vena cava (IVC) and pulmonary artery (PA). Blue line
and yellow line delineate IVC and PA of the reference image, respectively. A Reference
blood vessel, B Result of dual-weighted registration, C Result of single-weighted
registration, D Result of non-weighted registration.
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Table 1

Comparison of overlap ratios for the registration of inferior vena cava (IVC) and pulmonary artery (PA), using
N=12 pairs of images.

Method Avg. Overlap for IVC (%) T test Avg. Overlap for PA (%) T test

Unweighted 41.35 30.06

Single 57.70 2.0E-03 39.63 NS

Dual 58.93 9.0E-04 44.05 0.03
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