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SECTION 1. INTRODUCTION

Color-enhanced, or stained, cellular structures in histological images enable clinicians to 

identify morphological markers of a disease, and to proceed with therapy accordingly. 

However, because of variations in specimen preparation, staining, and imaging, resulting 

images may exhibit very different colors (Figure 1). Under such conditions, computer-aided 

diagnostic systems [1][2][3][4] that segment these structures based on their color often fail. 

One way to account for the observed difference in colors among images, i.e. ‘batch effect’, 

is to develop an interactive system that allows users to lend their domain knowledge to guide 

the segmentation process [1][2]. However, user-interaction lowers the overall objectivity, 

reproducibility and speed of such systems. Among automatic segmentation methods, 

supervised learning techniques have been reported to be more accurate than unsupervised 

learning methods [5][6][7]. We find that these previous techniques are vulnerable to batch 

effect, and that they tend to perform well only for data from the batch on which they are 

trained (Table 1). Therefore, we propose a system for automatic color segmentation of 

histological images which is designed to be resistant to batch effect (Figure 2). Our system 

incorporates knowledge from pre segmented reference images to normalize (Figure 2, Step 

1) and segment (Figure 2, Step 2) new patient images. Also, in order to make our system 

robust to the choice of reference image (j), we segment new images (k) with multiple 

reference images and combine labels, Lk0,j, using a voting scheme. Voting produces 

preliminary segmentation labels, Lk1, which we then use to reclassify (Figure 2, Step 3) test 

image pixels in their original color space and produce final segmentation labels, Lk2. The 

proposed system provides an automatic color segmentation of histopathological specimens 

that is resistant to batch effects. We achieve this by incorporating knowledge from domain 

experts into a novel color normalization scheme.
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SECTION 2. METHODS

2.1. Datasets

We analyze photomicrographs of histological specimens stained with hematoxylin and eosin 

(H&E). Basophilic structures containing nucleic acids—ribosomes and nucleitend to stain 

blue-purple; eosinophilic intra- and extracellular proteins tend to stain the cytoplasm pink; 

empty spaces—the lumen of glands—do not stain and tend to be white; and red blood cells 

appear intensely red. Thus, H&E staining produces four distinguishable clusters of colors in 

the image: blue-purple, white, pink and red. The color palettes in Figure 1 illustrate the 

mean color for each of the four color clusters in the ground truth segmentation. We consider 

four datasets (Figure 1): two renal tumor (RCC1 and RCC2 with 55 and 47 images, 

respectively), one glioblastoma (Gbm, 52 images), and one ovarian (Ov, 50 images). RCCI 

and RCC2 were obtained at Emory University in separate experimental setups. Ov and Gbm 

images were obtained from the NIH's public Cancer Genome Atlas (TCGA) repository. We 

use 1024×1024-pixel cropped portions of the original slide images. All datasets have varying 

grades and subtypes of cancer, leading to changes in the morphology and thus the prevalence 

of the four color classes in the images. Therefore, besides a color based batch effect, the data 

sets also have a prevalence based batch effect.

2.2. Ground Truth Preparation

To establish the ground truth labeling for each image, we developed an interface to help 

users label pixels semi automatically. In this system, the user first selects four example 

pixels from an image to represent the four stain colors. Each remaining pixel is then 

classified into one of four groups based on minimum Euclidean distance in the RGB color 

space to the four example pixels. The user may then fine-tune this segmentation by using a 

slider-bar to adjust weights given to these distances. This effectively adjusts the dominance 

of each cluster in the segmentation until the user is satisfied. We use the final labels from 

this segmentation to prepare reference images and to assess performance.

2.3. Image Normalization

We begin segmenting sample images by first normalizing the sample image's colors to the 

reference image's colors. Many color normalization techniques have been proposed[8][9], 

including histogram or quantile normalization in which the distributions of the three color 

channels are normalized separately. Here, we mathematically describe quantile 

normalization of all pixels in an image. An image k contains Nk pixels where each pixel n is 

represented as a triplet, Ik,n=[Rk,n,Gk,n,Bk,n]. Rk,n,Gk,n,Bk,n are color channel intensity 

values. We define a rank function fkC∈RNk×Nk that maps the color channel intensity, C∈
[R,G,B], from image k to a rank that ranges from 0 to Nk−1. Using the green channel as an 

example, fkG(Gk)=rkG, where Gk,rkG∈RNkare vectors of the green component intensity and 

rank for the kth image, respectively. IfGk,n∈[0,255] and rk,nG∈[0,Nk−1] are green 

component intensity and rank for the nth pixel in the kth image, then for any two pixels n1 

and n2,rk,n1G≤rk,n2G iff Gk,n1≤Gk,n2. The normalized green channel intensity of the nth 

pixel of the kthsample image to the jth reference image can be computed with 

G~k,nj=hjG⌊rk,nGNk×Nj+12⌋ ‘ where hjG(rj,nG,)=Gj,n is the inverse of the jth image's green 

rank function fjG(Gj)=rjG.
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We propose an alternative to simple quantile normalization where we use the color map of 

the image instead of all pixels in the image. The color map is obtained by extracting the 

unique colors in the image. Therefore, compared to all pixels, the color map does not 

include the frequency of any colors. Mathematically, quantile normalization of color map 
elements is similar to that of all pixels except that the image is represented by a list of 

unique color triplets, Uk,m=[Rk,m,Gk,m,Bk,m], where m∈[0,Mk−1] and Mk is the number 

of unique colors in the image. Because of variations in morphology from image to image, 

color and class frequencies vary.Figure 3 illustrates the distribution of green component 

intensity for all pixels and forcolor map elements of the four images in Figure 1. While the 

distributions of all pixelscontain peaks which vary with changes in morphology and class 

prevalence, the distributions of color map shows less change between images. Therefore, 

normalizing the all pixels distributions rather than the color map distributions tends to distort 

colors in the normalized image. Once colors have been normalized, pixels are then classified 

by color.

2.4. Normalized Image Segmentation

Pixel classification is performed in the color space of a reference image. Using a four-class 

linear discriminant classifier (LDA), we train using colors and labels obtained from ground 

truth segmentation of the reference image and classify pixels from the sample images based 

on normalized color. Let Lj∈RNj and Ij∈RNj×3, where each element is Ij,n=[Rj,n,Gj,n,Bj,n], 

be defined as the user-interactive segmentation labels and color values of pixels in image j, 

respectively. Let I~kj∈RNk×3 be defined as image k normalized to image j where each 

element is given by I~k,nj=[R~k,nj,G~k,nj,B~k,nj]. For convenience, we define the function 

L′=LDA(Ij,Lj,Ik), where L′ contains segmentation labels for image Ik using an LDA 

classifier trained with pixel colors in Ijand labels in Lj. Ik may also be a normalized image. 

Thus, to obtain the segmented image labels, L0 (Figure 2), we use Lk0,j=LDA(Ij,Lj,I~kj). 

The accuracy of segmentation depends on the choice of reference image. Due to biological 

variation in patients, reference image colors within a single dataset tend to vary, affecting 

color normalization and segmentation. Therefore, in order to select optimal reference 

images, we perform cross validation within each dataset batch. We use each image in the 

batch as a reference to normalize and segment all remaining images in the batch. The 

performance value of each reference image is the average segmentation accuracy of all 

remaining images. We select the top 10 performing references from each batch. This 

methodology selects reference images based on their ability to normalize and accurately 

segment other images in the batch. We did not observe significant changes in performance 

when selecting more or less than 10reference images.

In order to avoid the choice of a single canonical reference image, we develop a system that 

allows the use of multiple reference images. In our system, a sample image is normalized 

and segmented 10 times, using a different reference image each time. For each pixel in the 

sample image, we compute the final segmentation label by voting from multiple references. 

The label most frequently assigned to a pixel is chosen as its preliminary label (block Lk1 in 

Figure 2) before segmentation refinement.
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2.5. Segmentation Refinement

The preliminary labels obtained by classification and voting (Lk1, Figure 2) are good 

approximations of the ground truth labels, but we further refine this segmentation using the 

LDA classifier: Lk2=LDA(Ik,Lk1,Ik). This step trains the LDA classifier using colors from 

the original sample image k and using labels from voting. The trained classifier is then used 

to re-classify all pixels in image k. Intuitively, this is a post-processing step that ensures that 

the color groupings are separable in the original sample image color space, and that any 

color distortion introduced by normalization is removed.

SECTION 3. RESULTS AND DISCUSSION

Table 1 lists the segmentation results from our system using two types of normalization(all 
pixels or color map) and compares them to our system with no normalization, i.e. 

Lk0,j=LDA(Ij,Lj,Ik). We report accuracy of both L1 and L2 labels, to illustrate how re-

classification of pixels in the original color space of the sample image improves 

segmentation accuracy. The overall performance, at 85% accuracy, is best for a system that 

uses color map normalization and re-classification (color map L2). Figure 4compares 

segmentation results with color map and all pixels normalization. Re-classification (Figure 

4, + and ×) significantly improves the segmentation performance.Color map normalization 

performs better than all pixels normalization except for four cases involving the RCC1 

batch, possibly due to chromatic aberration, resulting in color map histogram distortion. 

However, in all pixels normalization, due to the low frequency of chromatic aberration 

colors, distortion is less severe. Figure 5 illustrates pseudo colored segmentation results for 

images in Figure 1.a and Figure 1.c. Figure 1.ais an Ov batch image and is segmented on a 

system trained by reference images from the RCC2 batch. Figure 1.c is an RCCI batch 

image and is segmented on a system trained by reference images from the Gbm batch. 

Again, the re-classification step enhances the segmentation results and color map 
normalization retains the morphology of the test image. For instance, in the second row of 

Figure 5, all pixelsnormalization alters the morphology of the test image, over segments the 

pink mask, and under-segments the white mask. Similarly in the top row of Figure 5, the 

pink mask is over-segmented while the other three masks are under segmented.

Automatic computer-aided cancer diagnostic systems for histological images are necessary 

to improve objectivity, reproducibility and speed of diagnosis. Many systems[1][2][3][4] 

require a color-based segmentation, which is often sensitive to batch effects. In this paper, 

we have presented an automatic color segmentation system that uses an expert's initial 

domain knowledge to normalize image colors prior to segmentation in order to reduce the 

effect of variance between batches of images. The high accuracy of these segmentation 

masks, relative to expert domain knowledge, will aid in increasing the overall performance 

and reproducibility of diagnostic systems that depend on color segmentation. We have tested 

our system using four very different batches of H&E histological cancer images and 

achieved high segmentation accuracy (85%). We expect that our system can be extended to 

other staining protocols, e.g. Papanicolaou stain, and is not restricted to segmentation 

problems with four stain colors.
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Figure 1. 
Sample images from four datasets: a. Ovarian (Ov), b. Glioblastoma (Gbm), c. Renal tumor 

(RCCl), d. Renal tumor (RCC2). Color palette illustrates cluster means (in ground truth) of 

four color classes- 1) blue-purple (basophilic), 2) pink (eosinophilic), 3) white (no stain) and 

4) red (red blood cells).
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Figure 2. 
System flow diagram with three main steps: 1) normalize, 2) segment normalized image, 3) 

re-classify pixels in the original color space.
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Figure 3. 
Distribution of green component intensities for (a) all pixels and (b) color map of images in 

Figure 1. Compared to color map, all pixels contain peaks which vary with changes in 

morphology and class prevalence.
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Figure 4. 
Comparison of segmentation accuracy of all pixels L1, all pixels L2, color map L1,color 
map L2.
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Figure 5. 
Segmentation of the images in Figure 1.a (top) and Figure 1.c (bottom). A magnified lower 

left portion of the image is shown; however, accuracy is reported for the full image. a) 

ground truth, b) All pixels L1, c) All pixels L2, d) Color map L1, e) Color map L2.
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Table 1

Segmentation accuracy compared to ground truth.

Train Test No
norm.

All
pixels

Color
map

L1 L2 L1 L2 L1 L2

RCC2 0.17 0.08 0.83 0.82 0.79 0.82

RCC1 Ov 0.32 0.43 0.79 0.83 0.77 0.81

Gbm 0.22 0.54 0.82 0.85 0.80 0.82

RCC1 0.37 0.56 0.85 0.88 0.79 0.87

RCC2 Ov 0.32 0.40 0.82 0.85 0.86 0.87

Gbm 0.23 0.46 0.80 0.84 0.81 0.84

RCC1 0.13 0.13 0.73 0.78 0.82 0.87

Ov RCC2 0.16 0.16 0.72 0.74 0.85 0.84

Gbm 0.77 0.82 0.76 0.80 0.85 0.85

RCC1 0.13 0.13 0.82 0.84 0.85 0.87

Gbm RCC2 0.16 0.16 0.78 0.80 0.84 0.83

Ov 0.84 0.84 0.78 0.83 0.87 0.87

0.32 0.39 0.79 0.82 0.82 0.85

* p-value for t-tests between: 1) L2all pixels and L2color map is−0.044, 0.044, 2) L1 and L2color map is−0.010.
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