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ABSTRACT

This paper introduces two novel vector beamforming algo-

rithms, namely the Vector Weight Normalized and Vector

Standardized Minimum Variance beamformers, for brain

source localization and reconstruction. Our mathematical

analysis shows that the Vector Weight Normalized Minimum

Variance beamformer (V-WNMVB) is the true vector version

of the Synthetic Aperture Magnetoencephalography (SAM).

Our Monte-Carlo simulation results with fixed and rotated

dipole sources show that the two new vector beamform-

ers give better source localization errors than the existing

ones, including SAM, linearly constrained minimum vari-

ance beamformer and vector Borgiotti-Kaplan beamformer.

Finally, the multiple dipole source simulation studies show

that the performance of V-WNMVB is as good as that of

SAM, however, it does not require any assumption on the

source orientation.

1. INTRODUCTION

The recorded EEG signals have been used to localize and to

reconstruct the brain sources, typically represented as elec-

tric current dipoles, in various applications [1]. Numerous

inverse source localization algorithms have been proposed in

the past [1]. Each of them relies on its own assumptions

and constraints to localize the sources. Among them are the

beamforming techniques which have been explored as a pos-

sible way to improve the spatial accuracy of source imaging

[18, 13, 14, 9, 2, 6]. A beamformer is basically a spatial filter

that can be applied at any place in the brain. By suppressing

the effects of sources at all other locations, a beamformer al-

lows us to estimate a brain activity at a particular place from

a segment of EEG signals.

There are two major types of beamformers: 1) scalar ones

in which the dipole orientation is assumed to be fixed and esti-

mated separately; 2) vector ones that estimate the three dipole

components simultaneously. Major scalar beamformers pro-

posed in the past include the scalar minimum variance beam-
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former (S-MVB) [8], the scalar weight normalized minimum

variance beamformer (S-WNMVB), the scalar standardized

minimum variance beamformer (S-SMVB) [8], and the syn-

thetic aperture magnetoencephalography (SAM) [13]. As for

vector beamformers, the most popular one is the vector min-

imum variance beamformer or linearly constrained minimum

variance beamformer (LCMV) [18]. The unit-noise power

vector beamformer or vector Borgiotti-Kaplan beamformer

(V-BKB) was introduced for MEG applications in [15], where

it was shown to give a better performance than LCMV.

The motivation of our work arises from the need of a bet-

ter vector beamformer for source imaging applications. Here,

we introduce two novel vector beamformers: vector weight

normalized minimum variance beamformer (V-WNMVB)

and vector standardized minimum variance beamformer (V-

SMVB). We also derive the analytical expressions for all the

beamformer metrics studied, including the output power and

output SNR. Moreover, efficient algorithms for computing

the tomographic maps of the two new beamformers and SAM

are introduced, which would stabilize the calculation when

the lead field matrix is not full rank.

2. METHODS

2.1. Conventional beamformers

The scalar beamformers assume the source orientation is

fixed, and their weight and orientation vectors are estimated

separately. The source moment d̂(r) for a dipole located at

r (x, y, z) and oriented in the direction v is reconstructed

from measured EEG signals M by d̂(r) = wT (r)M, where

w is the weight vector. As mentioned earlier, three ma-

jor scalar beamformers are compared in this study, namely

the scalar minimum variance beamformer (S-MVB), the

scalar weight normalized minimum variance beamformer (S-

WNMVB) and the scalar standardized minimum variance

beamformer (S-SMVB) [8]. The weight vector is obtained as

the solution to the optimization problem

minimize wTRw subject to wTg = ξ (1)
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where R is the covariance matrix, wTRw is the output power

of a scalar beamformer, g = Lv is the gain vector, and L is

the lead field matrix. The Lagrange multiplier technique [18]

can be used to obtain wξ =
R−1g

gTR−1g
ξ. Normally the covari-

ance matrix is singular, especially when the number of sam-

ples is less than the number of EEG channels. Then the reg-

ularized inverse R−1 =
(
R+ γ2I

)−1
is used instead, where

γ2 is the diagonal loading factor and I is the identity matrix.

By selecting different ξ we can obtain different types of

scalar beamformers. For S-MVB, ξ = 1 and the weight vector

is

w|S-MVB =
R−1g

gTR−1g
(2)

The S-WNMVB is derived based on the assumption that

the weight vector w is normalized, i.e. wTw = 1 [8]. In

this case, equation (1) leads to the following expressions:

ξ2
gTR−2g

(gTR−1g)
2 = 1 and ξ =

gTR−1g√
gTR−2g

. Substituting ξ

into wξ then gives

w|S-WNMVB =
R−1g√
gTR−2g

(3)

For S-SMVB [8], the output power is normalized such that

wTRw = 1. Combining this constraint with the gen-

eral formula for scalar beamformers in equation (1) gives

ξ2
1

gTR−1g
= 1 and ξ =

1√
gTR−1g

. The weight vector of

S-SMVB is therefore

w|S-SMVB =
R−1g√
gTR−1g

(4)

Using the output power of S-MVB to localize sources can

lead to a biased estimation of the source locations. To reduce

the localization bias, a normalized gain vector,
g

‖g‖ , is used

[8].

The optimum dipole orientation vopt is defined as the

one that maximizes the output signal-to-noise ratio Jmax =

max

(
vTLTR−1Lv

vTLTR−2Lv

)
[13]. The solution of the above

optimization problem is actually the maximum eigenvalue

λmax of the generalized eigen-decomposition: Jmax =
λmax (P,Q), where P = LTR−1L and Q = LTR−2L,

and the optimum orientation is the eigenvector corresponding

to the maximum eigenvalue.

There is also another approach to estimate the orientation,

where the normalized output power of the S-MVB is used as

the optimized function: Pmax = max

(
vTLTLv

vTLTR−1Lv

)
. In

this case, the optimum orientation vopt is the eigenvector that

corresponds to the maximum eigenvalue of the generalized

eigen-decomposition of Pmax = λmax (A,P), where A =
LTL.

Unlike the scalar ones, the vector beamformers simulta-

neously reconstruct the three dipole vector components. A

weight matrix is defined as W(r) = [wx(r),wy(r),wz(r)],
where wx(r), wy(r) and wz(r) are weight vectors for the x, y

and z directions respectively. The reconstructed dipole source

is therefore
[
d̂x(r), d̂y(r), d̂z(r)

]T
= WT (r)M, where d̂x,

d̂y and d̂z are the estimates of the dipole components in the

x, y and z directions.

The vector beamformers studied before include the lin-

early constrained minimum variance beamformer (LCMV)

and vector Borgiotti-Kaplan beamformer (V-BKB). The

weight for LCMV is found by solving the optimization prob-

lem with the unity gain constraint

minimize
{
tr

(
WTRW

)}
subject to LTW = F

(5)

Using again the Lagrange multiplier, W is obtained as [18]

W = R−1L
(
LTR−1L

)−1
F (6)

If R is singular, then the regularized inverse
(
R+ γ2I

)−1
is

used instead. Moreover, if F = I, we then obtain the weight

matrix for LCMV

W = R−1L
(
LTR−1L

)−1
(7)

As mentioned in [18, 14], source localization with the out-

put power of LCMV can also be biased towards the surface

electrodes. To avoid this, the use of the normalized lead field

matrix
[

lx
‖lx‖2

,
ly

‖ly‖2
, lz
‖lz‖2

]
or the neuronal activity index was

suggested, where ‖.‖2 is the Frobenius norm.

The constraints used for V-BKB in the minimization are

[14]

wT
ξ wξ = 1,wT

ξ gη = 0 with ξ, η = x, y, z; ξ �= η (8)

where gη is the gain vector for a dipole in the η direction. The

columns of the weight matrix can be obtained as

wξ =
R−1LP−1fξ√

fTξ Hfξ
(9)

where fξ is the unit vector in the ξ direction, and H =
P−1QP−1.

2.2. Novel vector beamformers

2.2.1. Vector weight normalized minimum variance beam-
former (V-WNMVB)

It is straightforward to show that the output power of LCMV

(as given in Table 2 later) has the localization bias since it de-

pends on the Frobenius norm of the lead field matrix ‖L‖2. To

compensate for this bias, normalization of the weight matrix
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Table 1: Scalar beamformer’s metrics, where R is the covari-

ance matrix, g is a gain vector, and σ2
n is the noise power for

each EEG channel

Beamformer Output power Output SNR

S-MVB
1

gTR−1g

gTR−1g

σ2
ng

TR−2g

S-WNMVB
gTR−1g

gTR−2g

gTR−1g

σ2
ng

TR−2g

S-SMVB 1
gTR−1g

σ2
ng

TR−2g

was proposed in [3]. This gives the so-called vector weight

normalized minimum variance beamformer (V-WNMVB)

with

W = R−1LP−1
(
P−1QP−1

)− 1
2 (10)

The detail derivation of the V-WNMVB is shown in [4] and

the expressions for its metrics are shown in Table 2.

2.2.2. Vector standardized minimum variance beamformer
(V-SMVB)

Similar to the V-WNMVB, localization bias in identifying

deep brain sources can be compensated by normalizing the

output power of the LCMV beamformer. For this type of

beamformer we select F such that the output power is nor-

malized, so WTRW = I and the weight matrix is given by

W = R−1LP− 1
2 (11)

All metric expressions for V-SMVB are also given in Table 2,

and their detailed derivations are shown in [4].

2.2.3. Metrics

The dipolar localization error (DLE), defined as the distance

between the original and estimated dipole locations, is proba-

bly the most basic quantity for evaluating beamformer’s per-

formance. Other quantities used in our analysis and compari-

son include the following: 1) the full width at half maximum

(FWHM); 2) the reconstructed source signal. The final ex-

pressions for the output power and output SNR of all beam-

formers are shown in Tables 1 and 2. An efficient way for

computing these two quantities will be described below.

2.2.4. An efficient algorithm to compute the output power/SNR
of SAM, V-WNMVB, and V-SMVB

Let X = USVT be the singular eigen-decomposition of

X = R−1L. Then we can rewrite the generalized eigen-

values of P and Q as λ (P,Q) = λ
(
XTRX,XTX

)
=

λ
(
VSUTRUSVT ,VS2VT

)
or λ (P,Q) = λ

(
UTRU

)
[7]. Hence, the generalized eigen-decomposition is con-

verted to a symmetric eigen-decomposition problem, which

improves the numerical stability of the output power/SNR

Table 2: Vector beamformer’s metrics, where P =
LTR−1L, Q = LTR−2L, H = P−1QP−1, and K is the

number of sources

Beamformer Output power Output SNR

LCMV tr
(
P−1

) tr
(
P−1

)
σ2
ntr (H)

V-BKB
∑

ξ=x,y,z

fTξ P−1fξ

fTξ Hfξ

∑
ξ=x,y,z

fTξ P−1fξ

fTξ Hfξ

3σ2
n

V-WNMVB tr
(
PQ−1

) tr
(
PQ−1

)
3Kσ2

n

V-SMVB 3K
3K

σ2
ntr (QP−1)

Algorithm 1 An efficient algorithm for computing the output

SNR of SAM

1: for each node inside the brain region do
2: Compute the lead field matrix L for the current node

and a left singular vector U of L, where L = USVT .

3: SNRout = λmax

(
UTRU

)
4: end for

calculation when the lead field matrix L or Q = LTR−2L is

not full rank. An efficient way to compute the output SNR for

SAM is given in Algorithm 1. It is straightforward to show

that similar algorithms can be used to compute the output

power/SNR of V-WNMVB and V-SMVB.

3. NUMERICAL STUDIES

In the numerical studies, we use a 176 × 240 × 256 realistic

head model with a resolution of 1mm × 1mm × 1mm
and constructed from an T1-weighted MRI image. The

forward problem is solved with our finite difference neu-

roelectromagnetic modeling software (FNS) [5]. The MRI

image is segmented using the FMRIB Software Library (FSL)

[16, 17, 10, 19] to get the white matter, gray matter, cerebro-

spinal fluid, skull and skin tissues. Two eye balls are seg-

mented manually using ITKSNAP [20]. The final segmented

head model is built from all the resulting masks using FNS

utilities [5]. Our realistic head model has 6 tissues with

the following conductivities (S/m): white matter–0.14; gray

matter–0.33; cerebro-spinal fluid–1.79; skull–0.018; scalp–

0.44; eyes–1.79 [11, 12].

3.1. Monte-Carlo simulation studies

In this simulation study, 1358 dipole locations, which span

the whole gray matter region, are selected using the constraint

logic programming technique (CLP) with the minimum dis-

tance constraint between any two dipole locations being
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Fig. 1: Fixed source simulation results

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

The input SNR (dB)

Lo
ca

liz
at

io
n 

er
ro

r 
(m

m
)

 

 
SNR

out
LCMV

P
out
V−BKB

SAM
P

out
V−WNMVB

SNR
out
V−SMVB

0 2 4 6 8 10 12
5

10

15

20

25

30

35

40

45

The input SNR (dB)

F
W

H
M

 (
m

m
)

 

 
SNR

out
LCMV

P
out
V−BKB

SAM
P

out
V−WNMVB

SNR
out
V−SMVB

Fig. 2: Rotated source simulation results

dmin = 10 mm. We generate the EEG signals for each

dipole after selecting randomly one orientation v from 33
dipole orientations distributed uniformly over the unit sphere

with the angle constraint θmax = 30o, where θmax is defined

as the maximum angle between any two orientations. The

simulated brain sources are sinusoidal signals with amplitude

1μA and its frequency is selected randomly from 5 to 100 Hz.

We use 5 values of input SNR: 0, 2, 4, 8 and 12 dB. For each

dipole, we generate 50 trials of white noise with different

seeds. Finally, we collect dipole localization error (DLE) and

full width at half maximum (FWHM) data for 338500 cases,

and the average values are reported.

Figure 1 shows the DLE and FWHM of the different

beamformers, where Pout and SNRout stand for the output

power and output SNR, respectively. Here, we can easily see

that the DLEs of V-WNMVB and V-SMVB are very close to

that of SAM, even though they do not require any assump-

tion about the dipole orientation. Moreover, our Monte-Carlo

simulation studies also show that the output SNR or neural

activity index of LCMV has a higher localization accuracy

than that of V-BKB. This finding is new and gives a more

complete view of the performance of LCMV and V-BKB.

In the rotated source simulations, each dipole’s orienta-

tion can fluctuate around the orientations used in the fixed

dipole simulation, and the maximum agular fluctuation is

300. The simulation results are shown in Figure 2. They

show that both V-WNMVB and V-SMVB have higher local-

ization accuracy than SAM, LCMV and V-BKB. Moreover,

the FWHM of SAM and V-WNMVB are very similar and

that of V-SMVB is the worst for a moderate to high input

SNR.

3.2. Multiple source simulation studies

In this study we simulate 3 brain sources to imitate the phys-

iological distribution of spontaneous brain activities. These

Table 3: Dipole localization errors (mm)

Beamformer 1st source 2nd source 3rd source

LCMV 6.08 2.45 1.73

V-VKB 6 7.35 4.12

SAM 2.45 1 1.73

V-WNMVB 2.45 1 1.73

V-SMVB 2 1.41 1.41

Fig. 3: Transverse cross-sectional views of tomographic map

for SAM

3 sources are located at frontal cortex, parieto-occipital sul-

cus and sensorimotor hand area with the amplitude of 3 μA,

5 μA, and 1 μA and frequency of 22 Hz, 15 Hz, and 8 Hz,

respectively. To make the simulation more realistic, we add

Gaussian white noise with an input SNR = 2 dB. Once the

EEG signals are generated, we use LCMV, V-BKB, SAM,

V-WNMVB, and V-SMVB to localize and reconstruct all

sources. The dipole localization errors for each beamfomer

are shown in Table 3. We can easily verify that the DLEs of

both V-WNMVB and V-SMVB are as good as those of SAM.

Figures 3 and 4 show 3 different transverse cross-sectional

views of the tomographic maps for SAM and V-WNMVB,

which are similar and very focal. The output tomographic

map of V-SMVB, as shown in Figure 5, however, is wide

spread.

4. CONCLUSIONS

Two new vector beamformers, namely V-WNMVB and V-

SMVB, have been devloped and tested. They show better

localization accuracy than conventional beamformers, includ-

ing LCMV and V-BKB, in both single (fixed and rotated) and

multiple source studies. These beamformers are promisng

for real applications where a vector beamformer is desired.

Moreover, these new beamformers can be combined with

Dynamic Imaging of Coherent Sources to localize the brain

sources in the frequency domain.

New efficient algorithms for computing the output SNR of

SAM, the output power of V-WNMVB and the output SNR

Fig. 4: Transverse cross-sectional views of tomographic map

for V-WNMVB
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Fig. 5: Transverse cross-sectional views of tomographic map

for V-SMVB

of V-SMVB are proposed. These algorithms help reduce the

numerical error when the lead field matrix is not full rank.
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