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Abstract
Network structures formed by actin filaments are present in many kinds of fluorescence
microscopy images. In order to quantify the conformations and dynamics of such actin filaments,
we propose a fully automated method to extract actin networks from images and analyze network
topology. The method handles well intersecting filaments and, to some extent, overlapping
filaments. First we automatically initialize a large number of Stretching Open Active Contours
(SOACs) from ridge points detected by searching for plus-to-minus sign changes in the gradient
map of the image. These initial SOACs then elongate simultaneously along the bright center-lines
of filaments by minimizing an energy function. During their evolution, they may merge or stop
growing, thus forming a network that represents the topology of the filament ensemble. We further
detect junction points in the network and break the SOACs at junctions to obtain “SOAC
segments”. These segments are then re-grouped using a graph-cut spectral clustering method to
represent the configuration of actin filaments. The proposed approach is generally applicable to
extracting intersecting curvilinear structures in noisy images. We demonstrate its potential using
two kinds of data: (1) actin filaments imaged by Total Internal Reflection Fluorescence
Microscopy (TIRFM) in vitro; (2) actin cytoskeleton networks in fission yeast imaged by spinning
disk confocal microscopy.

Index Terms
Actin Filament; Network Structures; Active Contour Models; Normalized Cuts

1. INTRODUCTION
All eukaryotic cells have actin proteins. Actin proteins can self-assemble into long polymers
to build networks and bundles of filaments that provide cellular mechanical integrity,
generate forces for cell movement, and act as tracks for intracellular transport by motor
proteins. Fluorescence microscopy is widely used to study the kinetics of single actin
filament growth in vitro [1,2,3], the assembly mechanism of the contractile ring during
cytokinesis [4], and the 3-D structure of microtubules [5]. Systematic analysis of the
topology and properties of cytoskeletal structures in such images can provide significant
insights into their conformations and dynamics. Fig. 1 demonstrates several kinds of
microscopic images in which actin networks or intersecting actin filaments are present.
Fluorescently-labeled actin filaments imaged by Total Internal Reflection Fluorescence
Microscopy (TIRFM) grow parallel to a glass slide, and some long filaments intersect with
each other in the last several frames of the TIRFM time-lapse sequence (Fig. 1(a)). In the
radial projection of 3D confocal microscopy images, actin filament bundles manifest
themselves as a meshwork during mitosis (Fig. 1(b)). Actin cables inside a cell imaged by
spinning-disk confocal microscopy also form a cytoskeleton network (Fig. 1(c)). To analyze
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these network structures, an important step is to accurately extract them from the
microscopy images.

Parametric active contour models (snakes) [6] have been reported as an effective method to
segment curvilinear structures such as actin filaments, actin cables in fission yeast, and
microtubules. Li et al. [7,8,9] used Stretching Open Active Contours (SOACs) to segment
and track individual filaments in a TIRFM image sequence. Smith et al. [10] further applied
this method to quantify the conformations and dynamics of actin cables in 3D confocal
microscopy images. Related methods have also been utilized to trace microtubules.
Nurgaliev et al. [11] employed active contour models and Monte Carlo simulations to locate
microtubules in 3D electron tomography images. Hadjidemetriou et al. [12] tracked
microtubule tips automatically using consecutive level sets methods. Sargin et al. [13] traced
microtubule bodies using second order derivatives of Gaussian filters and iterative
calculation of geodesic paths. Saban et al. [14] automatically located microtubule tips in the
first frame and tracked tips by searching for the closest match in subsequent frames.

These methods, however, do not explicitly model the topology of intersecting filaments and
filament meshworks. Furthermore, although SOACs demonstrate successful application to
single filament segmentation and tracking [7,8,9,10], they are not directly applicable to
extracting filament meshworks or segmenting multiple intersecting filaments
simultaneously. The reason is that manual initialization is required for each filament and the
behavior between different SOACs is not explicitly regulated.

While other methods often segment individual actin filaments one by one, our automated
method simultaneously extracts and segments all the filaments in a full-field image. Then
the topology of the network structure can be further analyzed and the relationship among
filaments can also be retrieved. Previous studies have addressed the network morphology
and distribution of intermediate filaments [18,19,20]. Here, we introduce a different
approach in which a large number of SOACs [7] evolve simultaneously. Furthermore, we
explicitly regulate their behavior when they meet, cross, and overlap with each other. When
the evolution is converged, we dissect each SOAC at the junctions of the extracted network
and re-group these dissected “SOAC segments” to obtain the configuration of actin
filaments.

The main contributions of the paper are: (1) A fully automated method for initializing
multiple SOACs along intensity ridges in the image; (2) A complete set of mechanisms for
regulating SOACs’ behavior during their simultaneous evolution, so that a neat network can
be extracted efficiently from noisy images; (3) Re-organization of SOAC segments using
Normalized Cuts [17] so that the newly grouped SOACs correspond to physical actin
filaments.

2. METHODOLOGY
2.1. Automatic Initialization of Multiple SOACs

Since noise can induce many false positives in detected ridge points, we first obtain the
smoothed image IG by Gaussian filtering with σ equal to the typical filament width (2–3
pixels). Though more sophisticated methods, such as Hessian-based vessel enhancement
filtering [15], enhance the appearance of filaments, Gaussian filtering is adequate as
suggested by our experiments.

Candidate points for multiple SOAC initialization are then detected. They are ridge points
with locally maximum intensity along a certain direction. Since any direction in 2D can be
decomposed into x and y components, a ridge point can be found by inspecting the plus-to-
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minus sign change in the gradient field G = [Gx, Gy] of IG along x and y directions
independently [16]. A pixel at location (i, j) is a vertical ridge point if Gx(i, j − 1) > 0 and
Gx(i, j) < 0; likewise, it is a horizontal ridge point if Gy(i, j − 1) > 0 and Gy(i, j) < 0. In other
words, the sign of Gx (or Gy) changes from positive to negative at a ridge point. If centered
difference is used to estimate G, the ridge points detected may lie next to the pixels with
locally maximum intensity. However, this does not incur any problem since SOACs can
automatically move to the centerline of a filament during their evolution. Unlike [16], we do
not detect other patterns of sign changes in G because +− sign changes already give enough
candidate points (Fig. 2).

Finally we initialize each SOAC from locally connected vertical/horizontal ridge points
using 8-connected-component analysis. Vertical and horizontal ridge points are used
separately so that the order to form a SOAC can be determined conveniently. For example,
from a connected component of horizontal ridge points, we can initialize a horizontal SOAC
starting from the point with minimum x coordinate, up to the one with maximum x
coordinate. This automatic initialization generates short vertical (in green) and horizontal (in
blue) SOACs (Fig. 3).

2.2. Simultaneous Evolution of Multiple SOACs
2.2.1. Dynamic Deformation with Stretching Energy—In the continuous domain, a
stretching open active contour model can be represented as a parametric curve, r(s) = (x(s),
y(s)), s ∈ [0,1]. A SOAC evolves by minimizing the contour energy E, where E = Eint + Eext.
Eint is an internal energy term, which maintains the continuity and smoothness of the
contour; Eext is an external energy term, which pushes the contour towards salient image
features, such as bright ridges. The internal energy Eint is defined as:

(1)

where α(s) and β(s) are the relative weights between the first-order and second-order terms.
The external energy Eext is also composed of two terms: an image term Eimg = IG and a
stretching term Estr. The definition of the external energy is:

(2)

where k is a constant balancing the internal and external energy.

To make a SOAC grow along the filament, we add stretching forces to its ends [7]. The
force direction is along the tangential direction at the ends and its magnitude is proportional
to the image intensity IG (r (s)) at a SOAC point. The gradient of the stretching term is
defined by:

(3)

where kstr is the coefficient balancing image and stretching term. So the external force field
is:

(4)
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Combining all terms, minimizing the contour energy E makes SOACs grow along the bright
ridges while keeping their continuity and smoothness. Summing up all terms and deriving
the EulerLagrange equation, a SOAC at iteration i are computed from the one at iteration i −
1 as follows:

(5a)

(5b)

where A is the pentadiagonal banded matrix containing the internal continuity and
smoothness constraints defined by (1), I is the identity matrix and γ is the step size [6]. All
SOACs need to be re-sampled after each iteration to keep the distance between adjacent
SOAC points. The contour energy E is minimized at each iteration. When the internal forces
and external forces are balanced, the system enters a state of equilibrium. If a certain
SOAC’s length and position does not change after a predefined number of iterations, it is
considered converged and it stops evolving. After all SOACs are converged, SOACs that are
too short to be a filament are deleted. The length threshold is set to 10 pixels.

2.2.2. Merging, Deletion and Growth Termination of Multiple SOACs—Because
several initial SOACs may lie on the same filament, they will partly or fully overlap as they
elongate. Furthermore, a SOAC may elongate erroneously to another filament at
intersections, leading to incorrect segmentation. To solve this problem arising from
simultaneous evolution, SOACs are merged, deleted or stopped elongating, to obtain a clear
topology of the filament ensemble. Merging and deletion also greatly reduces the number of
SOACs in action, making the evolution more efficient.

Let us denote the set of SOACs by S, and its cardinality by |S|. At each iteration, we do
pairwise calculation on a pair of SOACs ri and rj, i, j ∈ [1, |S|]. For each end point ri(t), t =
0, 1 of ri, we locate the last point ri(p) close to rj counting from ri(t), and the closest point
rj(q) to ri(p) on rj. The L2-norm distance threshold Dthresh for measuring closeness is set to 1
pixel.

Case I: SOAC merging: If q = 0,1 and the angle θ between the two tangential vectors at
ri(t) and rj(q) is sufficiently close to π and greater than θthresh, we merge ri with rj by
concatenating the non-overlapping part of ri to rj and then deleting ri (Fig. 4(a)). We set
θthresh = 2π/3.

Case II: SOAC deletion: If t = 0, p = 1 or t = 1, p = 0, indicating that ri is completely
covered by rj, we delete ri (Fig. 4(b)).

Case III: SOAC growth termination: If 0 < q < 1 and the length of the overlapping part of
ri exceeds a predefined threshold Othresh (Fig. 4(c)), we delete the overlapping part and
attach the end of ri(t) to rj(q) (Fig. 4(d)). When an end is fixed, we also set the stretching
coefficient kstr at that end to zero.

Other than the above three cases, we do not interrupt the SOACs’ evolution.

2.3. Dissecting SOACs and Re-Grouping SOAC Segments
2.3.1. Dissecting SOACs—Even though we regulate SOACs’ behavior in the evolution
process, we still cannot guarantee that each converged SOAC corresponds to an actual
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filament. This is because a SOAC may evolve to represent different filaments, or one
filament is represented by several different SOACs. This situation is illustrated in Fig. 5,
where green and blue indicate different SOACs.

To analyze the topology of the extracted filament network represented by the SOACs, we
first dissect each SOAC at junction points into “SOAC segments”. Junction points are those
SOAC points having one or more neighboring SOAC points that belong to another SOAC.
Fig. 6(a) shows an example of detected junctions in the network.

2.3.2. Grouping the SOAC Segments—After obtaining the SOAC segments, we can
examine which SOAC segments correspond to the same actin filament. Before grouping, we
need to detect “common segments” in all the SOAC segments. A common segment is a
segment where two or more filaments overlap. The observation for detecting a common
segment is that its two ends are both junctions and its average intensity is the highest among
all the segments sharing these two junctions. After that, we can form “grouping subsets” of
SOAC segments: a grouping subset consists of SOAC segments sharing a junction or
sharing a common segment. We then use Normalized Cuts [17] to group segments in each
grouping subset. Normalized Cuts is a graph partitioning algorithm for data clustering. It
minimizes the global criterion which measures both the total dissimilarity between different
subgroups of a graph as well as the total similarity within the subgroups.

Under the graph partitioning framework, a grouping subset can be represented as a small
complete weighted undirected graph Gk = (Vk, Ek), k = 1, …, K, where K is the number of
grouping subsets. Each SOAC segment in the grouping subset Gk is a node in Vk and the
edge weight wij specifies the junction continuity, which is defined by the local orientations
at the end points of segments. Because the actin filaments are smooth linear structures, two
segments sharing a junction are more likely to belong to the same filament if they are
continuous and smooth across the junction. So we use this prior information to construct the
affinity matrix W = {wij}, which is an N × N symmetric matrix and N is the number of
segments in the grouping subset (i.e. number of nodes in the subset’s graph Gk). Usually N
equals 3 or 4. To compute wij, we use the normalized angle between every two tangential
vectors at the end points of the segments. According to the results of filament curvature
distribution analysis [10], we use a sample distance of 20 pixels to estimate the direction of
tangent vectors at end points.

We specify the number of groups as 2 for a grouping subset if N = 3, 4. Occasionally N can
be 5 or 6, in which case we let the number of groups be 3.

At the final step, we successively merge the resulting groups if they share segments until all
the groups are disjoint. Fig. 6(b) illustrates an example of grouping results. Note that the
common segment belongs to both groups adjoining it.

3. APPLICATION TO EXPERIMENTAL DATA
3.1. Experimental Image Data

We use TIRFM image sequences from [3] for validation. In the experiment, polymerization
of muscle Mg-ADP-actin is monitored in the presence of inorganic phosphate (Pi) and actin
monomers. The pixel size is 0.17 μm. To evaluate our method, we use the last frames of the
sequences where the filaments are more crowded and have more intersections than previous
frames. A test image is shown in Fig. 1(a). Note that its non-uniform illumination makes the
magnitude of stretching force inconsistent across the image. We correct this problem by
subtracting the non-uniform background estimated by a gray-scale opening morphological
operation.

Xu et al. Page 5

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2011 August 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We also tested our method using a 2D radial projection of a 3D confocal microscopy image
of actin in a dividing fission yeast labeled by GFP-CHD [4] (Fig. 1(b)) as well as one 2D
confocal slice showing actin cables (Fig. 1(c)). Radial projections are obtained from stacks
of images of cells expressing GFP-CHD by radially projecting image data onto a 2D strip
which corresponds to the membrane unfolded longitudinally from the middle of the cell.
These images of cdc25–22 fission yeast cells reveal an intricate dynamic actin meshwork
establishing connections among myosin nodes.

3.2. Segmentation Examples and Evaluation
We select 55 filaments from one of the last frames of TIRFM sequences to measure the
segmentation error of our method. For each filament, a SOAC generated by [10] and
subsequently modified by a human expert serves as the ground truth. The body distance
d(rc, rt) between our computed SOAC rc and the corresponding ground truth SOAC rt is
defined as:

(6)

where rc(i) and rt(j) is the ith and jth points of SOAC rc and rt respectively. Since the tip
location is important, we also compute the L2 distance between locations of the two end
points of our computed SOAC and those of the ground truth SOAC. Fig. 7 shows the
segmentation results of our method, compared with the ground truth. Table 1 shows the
segmentation error statistics of our method. Fig. 8 illustrates a typical case in which the
SOAC segments whose orientations are more consistent are grouped together into one
filament during the Normalized Cuts grouping step. Application to confocal microscopy
images are shown in Fig. 9.

4. CONCLUSION
In this paper, we proposed an automated method to simultaneously segment intersecting
filaments that form a network structure. We further analyze the topology of the filament
network and re-organize the SOACs to represent the physical actin filaments. Experimental
and validation results demonstrate the performance of this method. One advantage of our
method is that it can overcome the disconnectivity problems induced by intensity gaps or
faint filaments in the image when extracting actin networks by thinning. One limitation of
our current method is that it cannot distinguish a filament from an overlapping filament if
the two filaments overlapping part covers an end point of one of the filaments. In the future
we plan to employ SOAC width and intensity information to better identify overlapping
parts of filaments.
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Fig. 1.
(a) Intersecting filaments in a TIRFM experiment. (b) Actin meshwork in a 2D radial
projection of a 3D confocal microscopy volume of a dividing cdc25–22 fission yeast cell
labeled by GFP-CHD. Vertical axis is arc length [4]. (c) One 2D confocal actin cables slice
of a fission yeast cell labeled by GFP-CHD. The cell radius is 1.73 μm.
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Fig. 2.
Ridge points detected along x or y directions are labeled green or blue, respectively; the ones
detected in both directions are labeled red.
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Fig. 3.
Initial SOACs initialized from ridge points. Green and blue ones are initialized from vertical
and horizontal ridge points, respectively.
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Fig. 4.
Illustration of cases for SOAC merging, deletion, and growth termination. (a) ri merges with
rj. (b) ri is deleted. (c) & (d) ri stops growing at ri(t). We attach ri(t) to rj(q) when the
overlapping region exceeds a predefined threshold Othresh.
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Fig. 5.
(top) Three intersecting filaments. (bottom) Converged SOACs do not correspond to the
actual filaments. Green and blue ones are different SOACs.
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Fig. 6.
(top) Detected junctions shown in red points. (bottom) SOAC segment grouping results; the
segments covering the same filament are in the same color; the blue arrow indicates an
overlapping common segment that is grouped to both the green and red groups.
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Fig. 7.
(top) Segmentation results. (bottom) Ground truth.
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Fig. 8.
(left) Two converged SOACs. (right) Re-grouped SOAC segments at that junction. The top
part of the left filament (left) is correctly re-grouped with the right filament (right) based on
local orientation continuity using Normalized Cuts.
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Fig. 9.
Filament network extraction in confocal microscopy images (see Fig. 1) (a) and (c) are
converged SOACs; (b) and (d) are re-grouping results giving the filaments.
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Table 1

Body and tip segmentation error statistics of 55 filaments. (Unit: pixel)

Mean Maximum Standard Deviation

Body 2.7312 8.3775 2.0266

Tip1 2.3645 11.2704 2.2668

Tip2 2.1377 8.3775 1.7210
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