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Abstract
The degree of white matter (WM) myelination is rather inhomogeneous across the brain. As a
consequence, white matter appears differently across the cortical lobes in MR images acquired
during early postnatal development. At 1 year old specifically, the gray/white matter contrast of
MR images in prefrontal and temporal lobes is limited and thus tissue segmentation results show
commonly reduce edaccuracy in these lobes. In this novel work, we propose the use of spatial
intensity growth maps (IGM) for T1 and T2 weighted image to compensate for local appearance
inhomogeneity. The IGM captures expected intensity changes from 1 to 2 years of age, as
appearance inhomogeneity is highly reduced by the age of 24 months. For that purpose, we
employ MRI data from a large dataset of longitudinal (12 and 24 month old subjects) MR study of
Autism. The IGM creation is based on automatically co-registered images at 12 months,
corresponding registered 24 months images, and a final registration of all image to a prior average
template. In template space, voxelwise correspondence is thus achieved and the IGM is computed
as the coefficient of a voxelwise linear regression model between corresponding intensities at 1-
year and 2-years. The proposed IGM shows low regression values of 1–10% in GM and CSF
regions, as well as in WM regions at advanced stage of myelination at 1-year. However, in the
prefrontal and temporal lobe we observed regression values of 20–25%, indicating that the IGM
appropriately captures the expected large intensity change in these lobes due to myelination. The
IGM is applied to cross-sectional MRI datasets of 1-year old subjects via registration, correction
and tissue segmentation of the corrected dataset. We validated our approach in a small study of
images with known, manual “ground truth” segmentations. We furthermore present an EM-like
optimization of adapting existing non-optimal prior atlas probability maps to fit known expert
rater segmentations.

Index Terms
MRI; tissue segmentation; expectation maximization (EM) algorithm; classification

1. INTRODUCTION
Brain tissue segmentation is a fundamental analysis step to anatomical studies of
neurodevelopment. Many methods have been proposed that segment MR images into tissue
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classes of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The most
widely employed approaches are expectation maximization (EM), artificial neural network
and fuzzy classification based algorithms [1, 2, 3]. These methods work well on images
from subjects older than 2 years of age, as the white matter of the brain has matured enough
in order to appear mostly homogenous across the brain. But WM in early postnatal stage
undergoes myelination that strongly affects MR appearance. The intensity of not-fully-
myelinated WM often appear similar to GM intensity. The progress of myelination in WM is
well known be inhomogeneous across the brain by following a pattern of posterior-to-
anterior lobes and superior to inferior progression. At 1 year old, the inferior frontal lobes
and temporal poles show consequently a reduced WM/GM contrast as compared to other
lobes. Not surprisingly, standard tissues segmentation methods, which assume homogeneous
within-class appearance across the image, produce incorrect results within the prefrontal and
temporal lobes. Commonly, white matter is undersegmented in these lobes. To address this,
the addition of a mixed WM/GM class or the use of regional/lobar atlases were proposed
[4], though with limited success unless paired longitudinal datasets exist.

The purpose of this study is to develop a novel method for brain tissue segmentation of
cross-sectional 1-year old MRI datasets using a novel spatial intensity growth map (IGM).
Our IGM captures expected intensity changes from 1 to 2 years of age, as appearance
inhomogeneity is highly reduced by the age of 24 months. The IGM is applied to MRI
images by deformable registration and subsequent intensity correction. The modified image
is then segmented with an EM based tissue segmentation method. The proposed method is
then evaluated on 3 T1 weigthed images of 1 year old subjects with manual “ground truth”
segmentation.

2. METHODS
2.1. Data

The study population consists of fourteen subjects with longitudinal T1 (160 slices with
TR=2400ms, TE=3.16ms, flip angle=8, field of view 224 × 256) and T2 weighted (160
slices with TR=3200ms, TE=499ms, flip angle=120, field of view 256 × 256) MR scans at
12 and 24 months. The subject scans are a selection from scans within the IBIS (Infant Brain
Imaging Study) network1 acquired at 4 different sites. The reason that we are randomly
selected from the autism and healthy datasets is to avoid being biased segmentation results
toward the specific group. All datasets were acquired on 3T Siemens Tim Trio scanners at
the same resolution of 1 × 1 × 1mm3. Three additional subjects from the same study were
selected for the evaluation study. Using ITK-SNAP2, trained expert researchers determined
manual segmentations of WM, GM and CSF of the full T1 image.

2.2. Preprocessing
An overview of processing is shown in Fig. 1. All images were first corrected for intensity
nonuniformity using N3 [5] resulting from inhomogeneities in the magnetic field. Then we
extracted the skull using FSL-BET (Brain Extraction Tool)3 for all subjects [6]. All T2
weighted images were rigidly registered to the corresponding T1 weighted images. Then, the
T1 and T2 images at two years of age were mapped into their corresponding intrasubject 1-
year old dataset by rigid registration followed by cross-correlation, thin-plate spline based
deformable registration [7]. Finally, all T1 MRIs of 1-year subjects were then registered into
a prior, common, average template coordinate space by 9 parameter (similarity transform)

1http://www.ibis-network.org
2http://www.itksnap.org
3http://www.fmrib.ox.ac.uk/fsl/bet2
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registration followed by the same deformable registration. The concatenated registration
transforms were applied to all the other images, such that all images (T1 weighted and T2
weighted at both 1 and 2 years) are mapped into a common template space. The unbiased,
age-appropriate (1-year) atlas template was computed via joint deformable registration that
simultaneously minimizes the difference of intensity and transformation [8] from 66 training
1-year old datasets within the IBIS study. Initial probabilistic spatial priors for all tissue
classes were determined by co-registering and adapting an existing 4-year old template (see
2.5).

2.3. Intensity growth map (IGM) generation
Based on the voxelwise correspondence in the average template space established in the
preprocessing, we compute the IGM as the local coefficient map (αi) from a reduced linear
regression model (Yi = αi · Xi) between the local intensity at 2-year (Yi) and 1-year (Xi) old
data in the each voxel (i). Whereas a monoexponential or second order model would be
needed for regression across a longer period or when incorporating multiple time points [9,
10], the selected linear model is a reasonable choice when we focus on a 1-year period from
12 to 24 months of age with only two known timepoints. While the common linear
regression model also includes a constant term, we did not consider this constant term, as we
assume that the background has the same zero mean intensity at both ages. The resulting
IGM map (see Fig. 2) will show high values of areas of high intensity change and low
values for those regions of moderate intensity change from 12 to 24 months.

2.4. Enhanced IGM based tissue segmentation
Like most atlas based segmentation approaches, our EM segmentation registers a prior atlas
template to a new subject’s T1 or T2 datasets and maps the atlas tissue priors to the subject
space. In our approach, we also map the IGM map into the subject image space. The T1 and
T2 IGMs are then convoluted with each T1 and T2 weighted image to yield intensity
corrected T1 and T2 images as input for an EM based tissue segmentation [11]. Next to the
posterior WM, GM and CSF probability maps, our EM segmentation approach also provides
a partial volume estimation map (PVE) for each tissue type. Using a thinning based 1D-
skeleton of the WM-PVE map binarized at 10%, we further enhance the posterior WM
probability setting the WM-PVE-skeleton to 1, as the WM often is thin and more variable in
the temporal pole and posterior occipital lobes. This last step does little to the overall
volume (less than 1% change), but provides considerable enhancement to any potential
cortical thickness analysis following the tissue segmentation.

2.5. Prior optimization
The result of our atlas based brain tissue segmentation is strongly dependent on the prior
tissue probability maps defined in the atlas template space. In our application, the initial
tissue class priors in the atlas space were determined by deformable registration of an
existing 4-year old atlas with known probability priors into the 1-year old atlas. As these
mapped probabilistic tissue maps may not be fully appropriate for our 1 year atlas, and we
employed an EM-like framework to optimize these maps. The tissue segmentation method
(described above) was thereby treated as a black box. As a first step, using the propagated 4-
year old probability priors, we computed the segmentation of the 14 subjects already
employed in the IGM computation. The resulting posterior maps were mapped back in the
atlas space, where they were averaged to represent updated prior probability maps. Then, for
all subsequent iterations, we computed the segmentation of three “training” subjects with
known manual expert segmentation and compared these to the current iteration’s hard
segmentation maps. Difference maps were computed for each tissue class (0 = correct
segmentation;+1 = false positive; −1 = false negative), averaged across all three training
subjects in the atlas space, and additively applied to the prior probability maps. The
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optimization iterated until the prior probabilities converged (less than 1% cumulative change
in probability across the WM, GM and CSF priors. Convergence was established after 4
iterations.

3. RESULTS
3.1. Intensity growth map

The computed T1 IGM reflects the expected maturation related MR intensity changes
between 1-year and 2-year old (see Fig. 2). GM and CSF, which are not related to the
myelination process, revealed relatively low change coefficients αi between 1.0 and 1.1 in
the T1 image. In WM regions that already underwent considerable myelination, we
measured similar coefficient values to those in GM and CSF regions. However, in those
WM areas that are known to exhibit a comparatively lower stage of myelination at 1-years
of, we observed 20–30% intensity difference between 1-year and 2-year olds (i.e.
coefficients(αi) around 1.25). The IGM coefficients for the T2 weighted images provided
the same interpretations although it appears inverse when compared to the T1 weighted
IGM. In both T1 and T2 IGM, the superior frontal lobe, inferior temporal lobe and temporal
pole changed the most. IGM corrected MR images of 1 year old subjects appear visually
with the appearance of a 2 year old’s MR image.

3.2. Adaptive one-year-old tissue probability atlas and experimental results
Fig. 3 displays how under-estimations occurred in the inferior temporal lobe and frontal lobe
using a conventional EM segmentations method on the uncorrected 1-year old data with
known ground truth. In addition over-estimation also occured in the superior frontal lobe
due to the low contrast in that region. However, when we applied our proposed IGM-EM
based method, we obtained more accurate segmentations of the WM and GM, especially in
the low contrast areas of the inferior temporal and superior frontal lobe. We validated the
accuracy of the IGM-EM segmentation methods against the three datasets with known
manual segmentations. Since those same datasets were also used in the optimization of the
prior atlas probability maps (see 2.5, we employed a leave-one-out scheme for all parts of
the validation. Thus, for each validation dataset the atlas probability maps were optimized
only over the other 2 datasets. A clear improvement in the inferior frontal, temporal and
posterior occipital lobe is visible. These regions are at a lower stage of myelination at 1 year
of age. We further favorably compared the performance of our proposed IGM-EM versus a
conventional EM method and FSL’s FIRST method (Fig. 4) using the Tanimoto volumetric
overlap error against the manual segmentation.

4. CONCLUSION
The quantitative analyses of postnatal development using brain tissue volume and cortical
thickness measurements, which are main components of most traditional anatomical MRI
studies, are based on accurate brain tissue segmentation. Here, we propose a correction and
tissue segmentation methodology that allows a standard brain tissue segmentation method to
handle low myelination areas in 1-year old brain MRIs. The method is based mainly on a
trained longitudinal model of MR intensity change from 1-year to 2-year old. We
furthermore presented a EM-based optimization of adapting existing non-optimal prior
probability maps to fit know expert rater segmentations.
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Fig. 1.
Overview of IGM calculation and generation of the optimized tissue probabilities using an
iterative EM process.
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Fig. 2.
IGM shows regression coefficients of about 25% in the prefrontal and temporal lobe regions
(ITK-SNAP visualization).
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Fig. 3.
Visual comparison of segmentation. The WM was under-estimated in prefrontal and inferior
temporal lobe (white dot circles) using the conventional EM algorithm as compared to the
IGM-EM results and the expert ground truth.
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Fig. 4.
Tanimoto Error results to the ground truth. The results of IGM-EM show the lowest error in
WM and GM.
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